46,130 research outputs found

    DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

    Get PDF
    In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.Comment: Accepted by TPAM

    Analysis of Hand Segmentation in the Wild

    Full text link
    A large number of works in egocentric vision have concentrated on action and object recognition. Detection and segmentation of hands in first-person videos, however, has less been explored. For many applications in this domain, it is necessary to accurately segment not only hands of the camera wearer but also the hands of others with whom he is interacting. Here, we take an in-depth look at the hand segmentation problem. In the quest for robust hand segmentation methods, we evaluated the performance of the state of the art semantic segmentation methods, off the shelf and fine-tuned, on existing datasets. We fine-tune RefineNet, a leading semantic segmentation method, for hand segmentation and find that it does much better than the best contenders. Existing hand segmentation datasets are collected in the laboratory settings. To overcome this limitation, we contribute by collecting two new datasets: a) EgoYouTubeHands including egocentric videos containing hands in the wild, and b) HandOverFace to analyze the performance of our models in presence of similar appearance occlusions. We further explore whether conditional random fields can help refine generated hand segmentations. To demonstrate the benefit of accurate hand maps, we train a CNN for hand-based activity recognition and achieve higher accuracy when a CNN was trained using hand maps produced by the fine-tuned RefineNet. Finally, we annotate a subset of the EgoHands dataset for fine-grained action recognition and show that an accuracy of 58.6% can be achieved by just looking at a single hand pose which is much better than the chance level (12.5%).Comment: Accepted at CVPR 201
    • …
    corecore