2,166 research outputs found

    Multi-sample Receivers Increase Information Rates for Wiener Phase Noise Channels

    Full text link
    A waveform channel is considered where the transmitted signal is corrupted by Wiener phase noise and additive white Gaussian noise (AWGN). A discrete-time channel model is introduced that is based on a multi-sample receiver. Tight lower bounds on the information rates achieved by the multi-sample receiver are computed by means of numerical simulations. The results show that oversampling at the receiver is beneficial for both strong and weak phase noise at high signal-to-noise ratios. The results are compared with results obtained when using other discrete-time models.Comment: Submitted to Globecom 201

    Capacity Outer Bound and Degrees of Freedom of Wiener Phase Noise Channels with Oversampling

    Full text link
    The discrete-time Wiener phase noise channel with an integrate-and-dump multi-sample receiver is studied. A novel outer bound on the capacity with an average input power constraint is derived as a function of the oversampling factor. This outer bound yields the degrees of freedom for the scenario in which the oversampling factor grows with the transmit power PP as PαP^{\alpha}. The result shows, perhaps surprisingly, that the largest pre-log that can be attained with phase modulation at high signal-to-noise ratio is at most 1/41/4.Comment: 5 pages, 1 figure, Submitted to Intern. Workshop Inf. Theory (ITW) 201

    Phase Modulation for Discrete-time Wiener Phase Noise Channels with Oversampling at High SNR

    Full text link
    A discrete-time Wiener phase noise channel model is introduced in which multiple samples are available at the output for every input symbol. A lower bound on the capacity is developed. At high signal-to-noise ratio (SNR), if the number of samples per symbol grows with the square root of the SNR, the capacity pre-log is at least 3/4. This is strictly greater than the capacity pre-log of the Wiener phase noise channel with only one sample per symbol, which is 1/2. It is shown that amplitude modulation achieves a pre-log of 1/2 while phase modulation achieves a pre-log of at least 1/4.Comment: To appear in ISIT 201

    Lower Bound on the Capacity of Continuous-Time Wiener Phase Noise Channels

    Get PDF
    A continuous-time Wiener phase noise channel with an integrate-and-dump multi-sample receiver is studied. A lower bound to the capacity with an average input power constraint is derived, and a high signal-to-noise ratio (SNR) analysis is performed. The capacity pre-log depends on the oversampling factor, and amplitude and phase modulation do not equally contribute to capacity at high SNR.Comment: Extended version of a paper submitted to ISIT 2015. 9 pages and 1 figure. arXiv admin note: text overlap with arXiv:1411.039

    Analysis and optimization of pilot symbol-assisted Rake receivers for DS-CDMA systems

    Get PDF
    The effect of imperfect channel estimation (CE) on the performance of pilot-symbol-assisted modulation (PSAM) and MRC Rake reception over time- or frequency-selective fading channels with either a uniform power delay profile (UPDP) or a nonuniform power delay profile (NPDP) is investigated. For time-selective channels, a Wiener filter or linear minimum mean square error (LMMSE) filter for CE is considered, and a closed-form asymptotic expression for the mean square error (MSE) when the number of pilots used for CE approaches infinity is derived. In high signal-to-noise ratio (SNR), the MSE becomes independent of the channel Doppler spectrum. A characteristic function method is used to derive new closed-form expressions for the bit error rate (BER) of Rake receivers in UPDP and NPDP channels. The results are extended to two-dimensional (2-D) Rake receivers. The pilot-symbol spacing and pilot-to-data power ratio are optimized by minimizing the BER. For UPDP channels, elegant results are obtained in the asymptotic case. Furthermore, robust spacing design criteria are derived for the maximum Doppler frequency

    Capacity bounds for MIMO microwave backhaul links affected by phase noise

    Get PDF
    We present bounds and a closed-form high-SNR expression for the capacity of multiple-antenna systems affected by Wiener phase noise. Our results are developed for the scenario where a single oscillator drives all the radio-frequency circuitries at each transceiver (common oscillator setup), the input signal is subject to a peak-power constraint, and the channel matrix is deterministic. This scenario is relevant for line-of-sight multiple-antenna microwave backhaul links with sufficiently small antenna spacing at the transceivers. For the 2 by 2 multiple-antenna case, for a Wiener phase-noise process with standard deviation equal to 6 degrees, and at the medium/high SNR values at which microwave backhaul links operate, the upper bound reported in the paper exhibits a 3 dB gap from a lower bound obtained using 64-QAM. Furthermore, in this SNR regime the closed-form high-SNR expression is shown to be accurate.Comment: 10 pages, 2 figures, to appear in IEEE Transactions on Communication

    On continuous-time white phase noise channels

    Get PDF
    A continuous-time model for the additive white Gaussian noise (AWGN) channel in the presence of white (memoryless) phase noise is proposed and discussed. It is shown that for linear modulation the output of the baud-sampled filter matched to the shaping waveform represents a sufficient statistic. The analysis shows that the phase noise channel has the same information rate as an AWGN channel but with a penalty on the average signal-to-noise ratio, the amount of penalty depending on the phase noise statistic. © 2014 IEEE
    • …
    corecore