1,383 research outputs found

    Persistent Monitoring of Events with Stochastic Arrivals at Multiple Stations

    Full text link
    This paper introduces a new mobile sensor scheduling problem, involving a single robot tasked with monitoring several events of interest that occur at different locations. Of particular interest is the monitoring of transient events that can not be easily forecast. Application areas range from natural phenomena ({\em e.g.}, monitoring abnormal seismic activity around a volcano using a ground robot) to urban activities ({\em e.g.}, monitoring early formations of traffic congestion using an aerial robot). Motivated by those and many other examples, this paper focuses on problems in which the precise occurrence times of the events are unknown {\em a priori}, but statistics for their inter-arrival times are available. The robot's task is to monitor the events to optimize the following two objectives: {\em (i)} maximize the number of events observed and {\em (ii)} minimize the delay between two consecutive observations of events occurring at the same location. The paper considers the case when a robot is tasked with optimizing the event observations in a balanced manner, following a cyclic patrolling route. First, assuming the cyclic ordering of stations is known, we prove the existence and uniqueness of the optimal solution, and show that the optimal solution has desirable convergence and robustness properties. Our constructive proof also produces an efficient algorithm for computing the unique optimal solution with O(n)O(n) time complexity, in which nn is the number of stations, with O(logn)O(\log n) time complexity for incrementally adding or removing stations. Except for the algorithm, most of the analysis remains valid when the cyclic order is unknown. We then provide a polynomial-time approximation scheme that gives a (1+ϵ)(1+\epsilon)-optimal solution for this more general, NP-hard problem

    Decentralized Control of an Energy Constrained Heterogeneous Swarm for Persistent Surveillance

    Get PDF
    Robot swarms are envisioned in applications such as surveillance, agriculture, search-and-rescue operations, and construction. The decentralized nature of swarm intelligence has three key advantages over traditional multi-robot control algorithms: it is scalable, it is fault tolerant, and it is not susceptible to a single point of failure. These advantages are critical to the task of persistent surveillance - where a number of target locations need to be visited as frequently as possible. Unfortunately, in the real world, the autonomous robots that can be used for persistent surveillance have a limited battery life (or fuel capacity). Thus, they need to abandon their surveillance duties to visit a battery swapping station (or refueling depot) a.k.a. €˜depots€™. This €˜down time€™ reduces the frequency of visitation. This problem can be eliminated if the depots themselves were autonomous vehicles that could meet the (surveillance) robots at some point along their path from one target to another. Thus, the robots would spend less time on the \u27charging\u27 (or refueling) task. In this thesis we present decentralized control algorithms, and their results, for three stages of the persistent surveillance problem. First, we consider the case where the robots have no energy constraints, and use a decentralized approach to allow the robots choose the €˜best€™ target that they should visit next. While the selection process is decentralized, the robots can communicate with all the other robots in the swarm, and let them know which is their chosen target. We then consider the energy constraints of the robots, and slightly modify the algorithm, so that the robots visit a depot before they run out of energy. Lastly, we consider the case where the depots themselves can move, and communicate with the robots to pick a location and time to meet, to be able to swap the empty battery of a robot, with a fresh one. The goal of persistent surveillance is to visit target locations as frequently as possible, and thus, the performance measurement parameter is chosen to be the median frequency of visitation for all target locations. We evaluate the performance of the three algorithms in an extensive set of simulated experiments

    Motion planning and control: a formal methods approach

    Get PDF
    Control of complex systems satisfying rich temporal specification has become an increasingly important research area in fields such as robotics, control, automotive, and manufacturing. Popular specification languages include temporal logics, such as Linear Temporal Logic (LTL) and Computational Tree Logic (CTL), which extend propositional logic to capture the temporal sequencing of system properties. The focus of this dissertation is on the control of high-dimensional systems and on timed specifications that impose explicit time bounds on the satisfaction of tasks. This work proposes and evaluates methods and algorithms for synthesizing provably correct control policies that deal with the scalability problems. Ideas and tools from formal verification, graph theory, and incremental computing are used to synthesize satisfying control strategies. Finite abstractions of the systems are generated, and then composed with automata encoding the specifications. The first part of this dissertation introduces a sampling-based motion planning algorithm that combines long-term temporal logic goals with short-term reactive requirements. The specification has two parts: (1) a global specification given as an LTL formula over a set of static service requests that occur at the regions of a known environment, and (2) a local specification that requires servicing a set of dynamic requests that can be sensed locally during the execution. The proposed computational framework consists of two main ingredients: (a) an off-line sampling-based algorithm for the construction of a global transition system that contains a path satisfying the LTL formula, and (b) an on-line sampling-based algorithm to generate paths that service the local requests, while making sure that the satisfaction of the global specification is not affected. The second part of the dissertation focuses on stochastic systems with temporal and uncertainty constraints. A specification language called Gaussian Distribution Temporal Logic is introduced as an extension of Boolean logic that incorporates temporal evolution and noise mitigation directly into the task specifications. A sampling-based algorithm to synthesize control policies is presented that generates a transition system in the belief space and uses local feedback controllers to break the curse of history associated with belief space planning. Switching control policies are then computed using a product Markov Decision Process between the transition system and the Rabin automaton encoding the specification.The approach is evaluated in experiments using a camera network and ground robot. The third part of this dissertation focuses on control of multi-vehicle systems with timed specifications and charging constraints. A rich expressivity language called Time Window Temporal Logic (TWTL) that describes time bounded specifications is introduced. The temporal relaxation of TWTL formulae with respect to the deadlines of tasks is also discussed. The key ingredient of the solution is an algorithm to translate a TWTL formula to an annotated finite state automaton that encodes all possible temporal relaxations of the given formula. The annotated automata are composed with transition systems encoding the motion of all vehicles, and with charging models to produce control strategies for all vehicles such that the overall system satisfies the mission specification. The methods are evaluated in simulation and experimental trials with quadrotors and charging stations

    Optimal path planning for surveillance with temporal-logic constraints

    Full text link
    In this paper we present a method for automatically generating optimal robot paths satisfying high-level mission specifications. The motion of the robot in the environment is modeled as a weighted transition system. The mission is specified by an arbitrary linear temporal-logic (LTL) formula over propositions satisfied at the regions of a partitioned environment. The mission specification contains an optimizing proposition, which must be repeatedly satisfied. The cost function that we seek to minimize is the maximum time between satisfying instances of the optimizing proposition. For every environment model, and for every formula, our method computes a robot path that minimizes the cost function. The problem is motivated by applications in robotic monitoring and data-gathering. In this setting, the optimizing proposition is satisfied at all locations where data can be uploaded, and the LTL formula specifies a complex data-collection mission. Our method utilizes Büchi automata to produce an automaton (which can be thought of as a graph) whose runs satisfy the temporal-logic specification. We then present a graph algorithm that computes a run corresponding to the optimal robot path. We present an implementation for a robot performing data collection in a road-network platform.This material is based upon work supported in part by ONR-MURI (award N00014-09-1-1051), ARO (award W911NF-09-1-0088), and Masaryk University (grant numbers LH11065 and GD102/09/H042), and other funding sources (AFOSR YIP FA9550-09-1-0209, NSF CNS-1035588, NSF CNS-0834260). (N00014-09-1-1051 - ONR-MURI; W911NF-09-1-0088 - ARO; LH11065 - Masaryk University; GD102/09/H042 - Masaryk University; FA9550-09-1-0209 - AFOSR YIP; CNS-1035588 - NSF; CNS-0834260 - NSF

    Multi-agent persistent surveillance under temporal logic constraints

    Full text link
    This thesis proposes algorithms for the deployment of multiple autonomous agents for persistent surveillance missions requiring repeated, periodic visits to regions of interest. Such problems arise in a variety of domains, such as monitoring ocean conditions like temperature and algae content, performing crowd security during public events, tracking wildlife in remote or dangerous areas, or watching traffic patterns and road conditions. Using robots for surveillance is an attractive solution to scenarios in which fixed sensors are not sufficient to maintain situational awareness. Multi-agent solutions are particularly promising, because they allow for improved spatial and temporal resolution of sensor information. In this work, we consider persistent monitoring by teams of agents that are tasked with satisfying missions specified using temporal logic formulas. Such formulas allow rich, complex tasks to be specified, such as "visit regions A and B infinitely often, and if region C is visited then go to region D, and always avoid obstacles." The agents must determine how to satisfy such missions according to fuel, communication, and other constraints. Such problems are inherently difficult due to the typically infinite horizon, state space explosion from planning for multiple agents, communication constraints, and other issues. Therefore, computing an optimal solution to these problems is often infeasible. Instead, a balance must be struck between computational complexity and optimality. This thesis describes solution methods for two main classes of multi-agent persistent surveillance problems. First, it considers the class of problems in which persistent surveillance goals are captured entirely by TL constraints. Such problems require agents to repeatedly visit a set of surveillance regions in order to satisfy their mission. We present results for agents solving such missions with charging constraints, with noisy observations, and in the presence of adversaries. The second class of problems include an additional optimality criterion, such as minimizing uncertainty about the location of a target or maximizing sensor information among the team of agents. We present solution methods and results for such missions with a variety of optimality criteria based on information metrics. For both classes of problems, the proposed algorithms are implemented and evaluated via simulation, experiments with robots in a motion capture environment, or both
    corecore