3,556 research outputs found

    ACS-PRM: Adaptive Cross Sampling Based Probabilistic Roadmap for Multi-robot Motion Planning

    Get PDF
    International audienceIn this paper we present a novel approach for multi-robot motion planning by using a probabilistic roadmap (PRM) based on adaptive cross sampling (ACS). The proposed approach, we call ACS-PRM, consists of three steps, which are C-space sampling, roadmap building and motion planning. Firstly, an adequate number of points should be generated in C-space on an occupancy grid map by using an adaptive cross sampling method. Secondly, a roadmap should be built while the potential targets and the milestones are extracted by second learning the result of sampling. Finally, the motion of robots should be planned by querying the constructed roadmap. In contrast to previous approaches, our ACS-PRM approach is designed to plan separate kinematic paths for multiple robots to minimize the problem of congestion and collision in an effective way so as to improve the planning efficiency. Our approach has been implemented and evaluated in simulation. The experimental results demonstrate the total planning time can be significantly reduced by our ACS-PRM approach compared with previous approaches

    Towards a Probabilistic Roadmap for Multi-robot Coordination

    Get PDF
    International audienceIn this paper, we discuss the problem of multi-robot coordination and propose an approach for coordinated multi-robot motion planning by using a probabilistic roadmap (PRM) based on adaptive cross sampling (ACS). The proposed approach, called ACS-PRM, is a sampling-based method and consists of three steps including C-space sampling, roadmap building and motion planning. In contrast to previous approaches, our approach is designed to plan separate kinematic paths for multiple robots to minimize the problem of congestion and collision in an effective way so as to improve the system efficiency. Our approach has been implemented and evaluated in simulation. The experimental results demonstrate the total planning time can be obviously reduced by our ACS-PRM approach compared with previous approaches

    Integrated Production-Distribution Planning with Considering Preventive Maintenance

    Get PDF
    The preventive maintenance activity is important thing in production system especially for a continuous production process, for example in fertilizer industry. Therefore, it has to be considered in production-distribution planning. This paper considers the interval of production facility’s preventive maintenance in production-distribution planning of multi echelon supply chain system which consists of a manufacturer with a continuous production process, a distribution center, a number of distributors and a number of retailers. The problem address in this paper is how to determine coordinated productiondistribution policies that considers the interval of production facility’s preventive maintenance, and customer demand only occurred at retailers and it fluctuates by time. Based on model of Santoso, et al. (2007), using the periodic review inventory model and a coordinated production and replenishment policies that are decided by central planning office and it must be obeyed by all entities of multi-echelon supply chain, the integrated production-distribution planning model is developed to determine the production and replenishment policies of all echelon in the supply chain system in order to minimize total system cost during planning horizon. Total system cost consists of set-up/ordering cost, maintenance cost, holding cost, outsourcing cost and transportation cost at all of entities. With considering preventive maintenance and there is one production run over the planning horizon, the replenishment cycle at distribution center, distributors and retailers that are found out are greater than the basic model. Also, the multiplication of replenishment cycle at distribution center in production cycle that is found out is greater than the basic model but the multiplication of replenishment cycle at retailers in its distributor are smaller than the basic model
    • 

    corecore