213 research outputs found

    An Autonomous Surface Vehicle for Long Term Operations

    Full text link
    Environmental monitoring of marine environments presents several challenges: the harshness of the environment, the often remote location, and most importantly, the vast area it covers. Manual operations are time consuming, often dangerous, and labor intensive. Operations from oceanographic vessels are costly and limited to open seas and generally deeper bodies of water. In addition, with lake, river, and ocean shoreline being a finite resource, waterfront property presents an ever increasing valued commodity, requiring exploration and continued monitoring of remote waterways. In order to efficiently explore and monitor currently known marine environments as well as reach and explore remote areas of interest, we present a design of an autonomous surface vehicle (ASV) with the power to cover large areas, the payload capacity to carry sufficient power and sensor equipment, and enough fuel to remain on task for extended periods. An analysis of the design and a discussion on lessons learned during deployments is presented in this paper.Comment: In proceedings of MTS/IEEE OCEANS, 2018, Charlesto

    Coverage and Time-optimal Motion Planning for Autonomous Vehicles

    Get PDF
    Autonomous vehicles are rapidly advancing with a variety of applications, such as area surveillance, environment mapping, and intelligent transportation. These applications require coverage and/or time-optimal motion planning, where the major challenges include uncertainties in the environment, motion constraints of vehicles, limited energy resources and potential failures. While dealing with these challenges in various capacities, this dissertation addresses three fundamental motion planning problems: (1) single-robot complete coverage in unknown environment, (2) multi-robot resilient and efficient coverage in unknown environment, and (3) time-optimal risk-aware motion planning for curvature-constrained vehicles. First, the ε* algorithm is developed for online coverage path planning in unknown environment using a single autonomous vehicle. It is computationally efficient, and can generate the desired back-and-forth path with less turns and overlappings. ε* prevents the local extrema problem, thus can guarantee complete coverage. Second, the CARE algorithm is developed which extends ε* for multi-robot resilient and efficient coverage in unknown environment. In case of failures, CARE guarantees complete coverage via dynamic task reallocations of other vehicles, hence provides resilience. Moreover, it reallocates idling vehicles to support others in their tasks, hence improves efficiency. Finally, the T* algorithm is developed to find the time-optimal risk-aware path for curvature-constrained vehicles. We present a novel risk function based on the concept of collision time, and integrate it with the time cost for optimization. The above-mentioned algorithms have been validated via simulations in complex scenarios and/or real experiments, and the results have shown clear advantages over existing popular approaches

    Real Time Motion Planning for Path Coverage with Applications in Ocean Surveying

    Get PDF
    Ocean surveying is the acquisition of acoustic data representing various features of the seafloor and the water above it, including water depth, seafloor composition, the presence of fish, and more. Historically, this was a task performed solely by manned vessels, but with advances in robotics and sensor technology, autonomous surface vehicles (ASVs) with sonar equipment are beginning to supplement and replace their more costly crewed counterparts. The popularity of these vessels calls for advances in software to control them. In this thesis we define the problem of path coverage to represent and generalize that of ocean surveying, and propose a real-time motion planning algorithm to solve it. We prove theorems of completeness and local asymptotic optimality regarding the proposed algorithm, and evaluate it in a simulated environment. We also discover a lack of robustness in the Dubins vehicle model when applied to real-time motion planning. We implement a model-predictive controller and other components for an autonomous surveying system, and evaluate it in simulation. The system documented in this thesis takes a step towards fully autonomous ocean surveying, and proposes further extensions that get even closer to that goal

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L
    • …
    corecore