742 research outputs found

    Inferring Robot Task Plans from Human Team Meetings: A Generative Modeling Approach with Logic-Based Prior

    Get PDF
    We aim to reduce the burden of programming and deploying autonomous systems to work in concert with people in time-critical domains, such as military field operations and disaster response. Deployment plans for these operations are frequently negotiated on-the-fly by teams of human planners. A human operator then translates the agreed upon plan into machine instructions for the robots. We present an algorithm that reduces this translation burden by inferring the final plan from a processed form of the human team's planning conversation. Our approach combines probabilistic generative modeling with logical plan validation used to compute a highly structured prior over possible plans. This hybrid approach enables us to overcome the challenge of performing inference over the large solution space with only a small amount of noisy data from the team planning session. We validate the algorithm through human subject experimentation and show we are able to infer a human team's final plan with 83% accuracy on average. We also describe a robot demonstration in which two people plan and execute a first-response collaborative task with a PR2 robot. To the best of our knowledge, this is the first work that integrates a logical planning technique within a generative model to perform plan inference.Comment: Appears in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13

    How much does a man cost? A dirty, dull, and dangerous application

    Get PDF
    Thesis (M.A.) University of Alaska Fairbanks, 2017This study illuminates the many abilities of Unmanned Aerial Vehicles (UAVs). One area of importance includes the UAV's capability to assist in the development, implementation, and execution of crisis management. This research focuses on UAV uses in pre and post crisis planning and accomplishments. The accompaniment of unmanned vehicles with base teams can make crisis management plans more reliable for the general public and teams faced with tasks such as search and rescue and firefighting. In the fight for mass acceptance of UAV integration, knowledge and attitude inventories were collected and analyzed. Methodology includes mixed method research collected by interviews and questionnaires available to experts and ground teams in the UAV fields, mining industry, firefighting and police force career field, and general city planning crisis management members. This information was compiled to assist professionals in creation of general guidelines and recommendations for how to utilize UAVs in crisis management planning and implementation as well as integration of UAVs into the educational system. The results from this study show the benefits and disadvantages of strategically giving UAVs a role in the construction and implementation of crisis management plans and other areas of interest. The results also show that the general public is lacking information and education on the abilities of UAVs. This education gap shows a correlation with negative attitudes towards UAVs. Educational programs to teach the public benefits of UAV integration should be implemented

    Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision

    Get PDF
    Search and rescue (SAR) operations can take significant advantage from supporting autonomous or teleoperated robots and multi-robot systems. These can aid in mapping and situational assessment, monitoring and surveillance, establishing communication networks, or searching for victims. This paper provides a review of multi-robot systems supporting SAR operations, with system-level considerations and focusing on the algorithmic perspectives for multi-robot coordination and perception. This is, to the best of our knowledge, the first survey paper to cover (i) heterogeneous SAR robots in different environments, (ii) active perception in multi-robot systems, while (iii) giving two complementary points of view from the multi-agent perception and control perspectives. We also discuss the most significant open research questions: shared autonomy, sim-to-real transferability of existing methods, awareness of victims' conditions, coordination and interoperability in heterogeneous multi-robot systems, and active perception. The different topics in the survey are put in the context of the different challenges and constraints that various types of robots (ground, aerial, surface, or underwater) encounter in different SAR environments (maritime, urban, wilderness, or other post-disaster scenarios). The objective of this survey is to serve as an entry point to the various aspects of multi-robot SAR systems to researchers in both the machine learning and control fields by giving a global overview of the main approaches being taken in the SAR robotics area

    Improving Drone Imagery For Computer Vision/Machine Learning in Wilderness Search and Rescue

    Full text link
    This paper describes gaps in acquisition of drone imagery that impair the use with computer vision/machine learning (CV/ML) models and makes five recommendations to maximize image suitability for CV/ML post-processing. It describes a notional work process for the use of drones in wilderness search and rescue incidents. The large volume of data from the wide area search phase offers the greatest opportunity for CV/ML techniques because of the large number of images that would otherwise have to be manually inspected. The 2023 Wu-Murad search in Japan, one of the largest missing person searches conducted in that area, serves as a case study. Although drone teams conducting wide area searches may not know in advance if the data they collect is going to be used for CV/ML post-processing, there are data collection procedures that can improve the search in general with automated collection software. If the drone teams do expect to use CV/ML, then they can exploit knowledge about the model to further optimize flights.Comment: 6 pages, 4 figure

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved

    WiSARD: A Labeled Visual and Thermal Image Dataset for Wilderness Search and Rescue

    Full text link
    Sensor-equipped unoccupied aerial vehicles (UAVs) have the potential to help reduce search times and alleviate safety risks for first responders carrying out Wilderness Search and Rescue (WiSAR) operations, the process of finding and rescuing person(s) lost in wilderness areas. Unfortunately, visual sensors alone do not address the need for robustness across all the possible terrains, weather, and lighting conditions that WiSAR operations can be conducted in. The use of multi-modal sensors, specifically visual-thermal cameras, is critical in enabling WiSAR UAVs to perform in diverse operating conditions. However, due to the unique challenges posed by the wilderness context, existing dataset benchmarks are inadequate for developing vision-based algorithms for autonomous WiSAR UAVs. To this end, we present WiSARD, a dataset with roughly 56,000 labeled visual and thermal images collected from UAV flights in various terrains, seasons, weather, and lighting conditions. To the best of our knowledge, WiSARD is the first large-scale dataset collected with multi-modal sensors for autonomous WiSAR operations. We envision that our dataset will provide researchers with a diverse and challenging benchmark that can test the robustness of their algorithms when applied to real-world (life-saving) applications

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare
    • …
    corecore