4,274 research outputs found

    Multi-resolution time-domain modelling technique and its applications in electromagnetic band gap enhanced antennas

    Get PDF
    PhDNewly emerged Electromagnetic Band Gap (EBG) structures possess multiple frequency bands that prohibit wave propagation and such stop bands are basically determined by the periodicity of the structure. Such desirable features make EBG hybrid antenna an interesting topic. Traditional full-wave techniques lack the efficiency to fully cope with the complexity of these hybrid structures, since the periodical elements are often much smaller in size than the accompanying antenna components. The Haar wavelet based Multi-Resolution Time Domain (MRTD) technique provides improved numerical resolution over the conventional Finite-Difference Time-Domain (FDTD) method, as well as simplicity in formulation. One-dimensional, two-dimensional and three-dimensional level-one codes are developed to assist the numerical modelling of the hybrid EBG antennas. An explicit form of Perfectly Matched Layer (PML) configuration is proposed, proved and presented. As a generic approach, its extensions suit every single level of Haar wavelet functions. A source expansion scheme is proposed thereafter. The concept of a multi-band multi-layer EBG hybrid antenna is presented. The theoretical prediction of antenna resonances is achieved through an effective medium model. It has been verified via numerical simulations and measurements. The 3D MRTD code is later applied to simulate such a structure. In addition, EBG enhanced circularly polarized photonic patch antennas have been studied. It is demonstrated that split-resonant rings (SRRs) and the like in EBG antennas can lead to antenna gain enhancement, backward radiation reduction and harmonic suppression. Furthermore, a circularly polarized two-by-two antenna array with spiral EBG elements is presented. The spiral element with ground via is more compact in size than the traditional mushroom structure, which is proven very efficient in blocking unwanted surface wave. Hence it reduces the mutual coupling of the array antenna significantly

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Characterisation of human body and environmental effects on the performance of mobile terminal antennas

    Get PDF
    PhDProvision of efficient services to the user anywhere at anytime is being a centre of research and development in Wireless Personal Area Networks (WPAN) and Wireless Body Area Networks (WBAN). Antenna is the essential part of WPAN/WBAN applications that got affected by two major factors: human body presence and nature of the surrounding environment. The presence of the human body in the proximity of the antenna causes electromagnetic (EM) reflections from the body surface and absorptions in the lossy body tissues resulting in antenna detuning, radiation pattern degradations and impedance mismatch. On the other hand, incident radio waves undergo reflections, difractions and scattering from the surrounding environment objects including buildings, trees, vehicles and ground, causing multipath fading. The thesis gives an overview of the main investigations, results and analyses accomplished in a study concerning the commercially available Bluetooth and GPS antennas working in the vicinity of the human body. Detailed numerical modelling process is adopted followed by measurements for validation. The thesis highlights the role of surface waves as a potential transmission medium in an on-body Bluetooth wireless communication link taking into account the effects of antenna-body separations and presence of the surrounding objects blocking the direct communication path. The thesis also presents a novel statistical model to evaluate the performance of GPS mobile terminal antennas in the multipath environment. This model characterises the antenna performance and identifies the key factors that can be used to enhance it, in a real working environment outside an anechoic chamber. The study also deals with presence of the human body in the multipath environment and its effects on the operation of the GPS antennas

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    The 2017 Terahertz Science and Technology Roadmap

    Get PDF
    Science and technologies based on terahertz frequency electromagnetic radiation (100GHz-30THz) have developed rapidly over the last 30 years. For most of the 20th century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to “real world” applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2016, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 17 sections that cover most of the key areas of THz Science and Technology. We hope that The 2016 Roadmap on THz Science and Technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies

    Different Approaches of Numerical Analysis of Electromagnetic Phenomena in Shaded Pole Motor with Application of Finite Elements Method

    Get PDF
    In this paper is used Finite Element Method-FEM for analysis of electromagnetic quantities of small micro motor – single phase shaded pole motor-SPSPM. FEM is widely used numerical method for solving nonlinear partial differential equations with variable coefficients. For that purpose motor model is developed with exact geometry and material’s characteristics. Two different approaches are applied in FEM analysis of electromagnetic phenomena inside the motor: magneto-static where all electromagnetic quantities are analysed in exact moment of time meaning frequency f=0 Hz and timeharmonic magnetic approach where the magnetic field inside the machine is time varying, meaning frequency f=50 Hz. Obtained results are presented and compared with available analytical result
    • …
    corecore