601 research outputs found

    Radiographic contrast-enhancement masks in digital radiography

    Get PDF
    Radiographic film/screen (F/S) images have a narrow latitude or dynamic range. The film’s ability to record and view all the anatomy within the x-ray field is limited by this narrow dynamic range. The advent of digital radiographic means of storing and displaying radiographic images has improved the ability to record and visualise all of the anatomy. The problem still exists in digital radiography (DR) when radiographic examinations of certain anatomical regions are undertaken. In this work, the value of anatomically shaped radiographic contrast-enhancement masks (RCMs) in improving image contrast and reducing the dynamic range of images in DR was examined. Radiographic contrast-enhancement masks are digital masks that alter the radiographic contrast in DR images. The shape of these masks can be altered by the user. Anatomically shaped RCMs have been modelled on tissue compensation filters (TCFs) commonly used in F/S radiographic examinations. The prime purpose of a TCF is to reduce the dynamic range of photons reaching the image receptor and hence improve radiographic contrast in the resultant image. RCMs affect the dynamic range of the image rather than the energy source of the image, that of the x-ray photons. The research consisted of three distinct phases. The first phase was to examine physical TCFs and their effects on F/S radiographic images. Physical TCFs are used in radiographic F/S examinations to attenuate the x-ray beam to compensate for varying patient tissue thicknesses and/or densities. The effect of the TCF is to reduce resultant radiographic optical density variations in the image, allowing the viewer to observe a range of densities within the image which would otherwise not be visualised. Physical TCFs are commonly aluminium- or lead-based materials that attenuate the x-ray beam. A TCF has varying physical thickness to differentially attenuate the iii beam and is shaped for specific anatomical situations. During this project, various commonly used physical TCFs were examined. Measurements of size and thickness were made. Characteristics of linear attenuation coefficients and half-value thicknesses were delineated for various TCF materials and at various energies. The second phase of the research was to model the physical TCFs in a digital environment and apply the RCMs to DR images. The digital RCMs were created with similar characteristics to mimic the shapes to the physical TCFs. The RCM characteristics can be adjusted by the viewer of the image to suit the anatomy being imaged. Anatomically shaped RCMs were designed to assist in overcoming a limitation when viewing digital radiographic images, that of the dynamic range of the image. Anatomically shaped RCMs differ from other means of controlling the dynamic range of a digital radiographic image. It has been shown that RCMs can reduce the range of optical densities within images with a large dynamic range, to facilitate visualisation of all anatomy within the image. Physical TCFs are used within a specific range of radiographic F/S examinations. Digital radiographic images from this range of examinations were collected from various clinical radiological centres. Anatomically shaped RCMs were applied to the images to improve radiographic contrast of the images. The third phase of the research was to ascertain the benefits of the use of RCMs. Various other methods are currently in use to reduce the dynamic range of digital radiographic images. It is generally accepted that these methods also introduce noise into the image and hence reduce image quality. Quantitative comparisons of noise within the image were undertaken. The anatomically shaped RCMs introduced less noise than current methods designed to reduce the dynamic range of digital radiographic images. It was shown that RCM methods do not affect image quality. Radiographers make subjective assessment of digital radiographic image quality as part of their professional practice. To assess the subjective quality of images enhanced with anatomically shaped RCMs, a survey of radiographers and other iv qualified people was undertaken to ascertain any improvement in RCM-modified images compared to the original images. Participants were provided with eight pairs of image to compare. Questions were asked in the survey as to which image had the better range of optical densities; in which image the anatomy was easiest to visualise; which image had the simplest contrast and density manipulation for optimal visualisation; and which image had the overall highest image quality. Responses from 123 participants were received and analysed. The statistical analysis showed a higher preference by radiographers for the digital radiographic images in which the RCMs had been applied. Comparisons were made between anatomical regions and between patient-related factors of size, age and whether pathology was present in the image or not. The conclusion was drawn that digital RCMs correctly applied to digital radiographic images decrease the dynamic range of the image, allowing the entire anatomy to be visualised in one image. Radiographic contrast in the image can be maximised whilst maintaining image quality. Using RCMs in some digital radiographic examinations, radiographers will be able to present optimised images to referring clinicians. It is envisaged that correctly applied RCMs in certain radiographic examinations will enhance radiographic image quality and possibly lead to improved diagnosis from these images

    Effective and Efficient Non-Destructive Testing of Large and Complex Shaped Aircraft Structures

    Get PDF
    The main aim of the research described within this thesis is to develop methodologies that enhance the defect detection capabilities of nondestructive testing (NDT) for the aircraft industry. Modem aircraft non-destructive testing requires the detection of small defects in large complex shaped components. Research has therefore focused on the limitations of ultrasonic, radioscopic and shearographic methods and the complimentary aspects associated with each method. The work has identified many parameters that have significant effect on successful defect detection and has developed methods for assessing NDT systems capabilities by noise analysis, excitation performance and error contributions attributed to the positioning of sensors. The work has resulted in 1. The demonstration that positional accuracy when ultrasonic testing has a significant effect on defect detection and a method to measure positional accuracy by evaluating the compensation required in a ten axis scanning system has revealed limitsio the achievable defect detection when using complex geometry scanning systems. 2. A method to reliably detect 15 micron voids in a diffusion bonded joint at ultrasonic frequencies of 20 MHz and above by optimising transducer excitation, focussing and normalisation. 3. A method of determining the minimum detectable ultrasonic attenuation variation by plotting the measuring error when calibrating the alignment of a ten axis scanning system. 4. A new formula for the calculation of the optimum magnification for digital radiography. The formula is applicable for focal spot sizes less than 0.1 mm. 5. A practical method of measuring the detection capabilities of a digital radiographic system by calculating the modulation transfer function and the noise power spectrum from a reference image. 6. The practical application of digital radiography to the inspection of super plastically formed ditThsion bonded titanium (SPFDB) and carbon fibre composite structure has been demonstrated but has also been supported by quantitative measurement of the imaging systems capabilities. 7. A method of integrating all the modules of the shearography system that provides significant improvement in the minimum defect detection capability for which a patent has been granted. 8. The matching of the applied stress to the data capture and processing during a shearographic inspection which again contributes significantly to the defect detection capability. 9. The testing and validation of the Parker and Salter [1999] temporal unwrapping and laser illumination work has led to the realisation that producing a pressure drop that would result in a linear change in surface deformation over time is difficult to achieve. 10. The defect detection capabilities achievable by thermal stressing during a shearographic inspection have been discovered by applying the pressure drop algorithms to a thermally stressed part. 11. The minimum surface displacement measurable by a shearography system and therefore the defect detection capabilities can be determined by analysing the signal to noise ratio of a transition from a black (poor reflecting surface) to white (good reflecting surface). The quantisation range for the signal to noise ratio is then used in the Hung [1982] formula to calculate the minimum displacement. Many of the research aspects contained within this thesis are cuffently being implemented within the production inspection process at BAE Samlesbury

    Effective and efficient non-destructive testing of large and complex shaped aircraft structures

    Get PDF
    The main aim of the research described within this thesis is to develop methodologies that enhance the defect detection capabilities of nondestructive testing (NDT) for the aircraft industry. Modem aircraft non-destructive testing requires the detection of small defects in large complex shaped components. Research has therefore focused on the limitations of ultrasonic, radioscopic and shearographic methods and the complimentary aspects associated with each method. The work has identified many parameters that have significant effect on successful defect detection and has developed methods for assessing NDT systems capabilities by noise analysis, excitation performance and error contributions attributed to the positioning of sensors. The work has resulted in 1. The demonstration that positional accuracy when ultrasonic testing has a significant effect on defect detection and a method to measure positional accuracy by evaluating the compensation required in a ten axis scanning system has revealed limitsio the achievable defect detection when using complex geometry scanning systems. 2. A method to reliably detect 15 micron voids in a diffusion bonded joint at ultrasonic frequencies of 20 MHz and above by optimising transducer excitation, focussing and normalisation. 3. A method of determining the minimum detectable ultrasonic attenuation variation by plotting the measuring error when calibrating the alignment of a ten axis scanning system. 4. A new formula for the calculation of the optimum magnification for digital radiography. The formula is applicable for focal spot sizes less than 0.1 mm. 5. A practical method of measuring the detection capabilities of a digital radiographic system by calculating the modulation transfer function and the noise power spectrum from a reference image. 6. The practical application of digital radiography to the inspection of super plastically formed ditThsion bonded titanium (SPFDB) and carbon fibre composite structure has been demonstrated but has also been supported by quantitative measurement of the imaging systems capabilities. 7. A method of integrating all the modules of the shearography system that provides significant improvement in the minimum defect detection capability for which a patent has been granted. 8. The matching of the applied stress to the data capture and processing during a shearographic inspection which again contributes significantly to the defect detection capability. 9. The testing and validation of the Parker and Salter [1999] temporal unwrapping and laser illumination work has led to the realisation that producing a pressure drop that would result in a linear change in surface deformation over time is difficult to achieve. 10. The defect detection capabilities achievable by thermal stressing during a shearographic inspection have been discovered by applying the pressure drop algorithms to a thermally stressed part. 11. The minimum surface displacement measurable by a shearography system and therefore the defect detection capabilities can be determined by analysing the signal to noise ratio of a transition from a black (poor reflecting surface) to white (good reflecting surface). The quantisation range for the signal to noise ratio is then used in the Hung [1982] formula to calculate the minimum displacement. Many of the research aspects contained within this thesis are cuffently being implemented within the production inspection process at BAE Samlesbury.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Imaging applications from a laser wakefield accelerator

    Get PDF
    Laser-plasma wakefield acceleration (LWFA) is a promising technology that is attracting the attention of the scientific community. It is a new acceleration concept where electrons can be accelerated to very high energy (~150 MeV) in a very short distance (mm scale). Electrons "surf" plasma waves excited by the passage of a high power laser (~1018 Wcm-2) through plasma. Electrons in the LWFA can undergo transverse oscillation and emit synchrotron-like X-ray radiation, commonly known as betatron radiation, in a narrow cone along the laser propagation axis. The properties of both the electrons and the X-rays produced by the LWFA make them excellent candidates for a wide range of applications. In this thesis, both betatron X-ray and bremsstrahlung sources from the ALPHA-X laboratory are used to carry out both conventional imaging and X-ray phase-contrast imaging experiments to explore the feasibility of real-world applications. The characterisation of the betatron X-ray radiation produced by the LWFA in the ALPHA-X laboratory is presented. In the last Chapter, a brief discussion of the potential of LWFA technology for clinical applications is presented.Laser-plasma wakefield acceleration (LWFA) is a promising technology that is attracting the attention of the scientific community. It is a new acceleration concept where electrons can be accelerated to very high energy (~150 MeV) in a very short distance (mm scale). Electrons "surf" plasma waves excited by the passage of a high power laser (~1018 Wcm-2) through plasma. Electrons in the LWFA can undergo transverse oscillation and emit synchrotron-like X-ray radiation, commonly known as betatron radiation, in a narrow cone along the laser propagation axis. The properties of both the electrons and the X-rays produced by the LWFA make them excellent candidates for a wide range of applications. In this thesis, both betatron X-ray and bremsstrahlung sources from the ALPHA-X laboratory are used to carry out both conventional imaging and X-ray phase-contrast imaging experiments to explore the feasibility of real-world applications. The characterisation of the betatron X-ray radiation produced by the LWFA in the ALPHA-X laboratory is presented. In the last Chapter, a brief discussion of the potential of LWFA technology for clinical applications is presented

    Assessment and optimisation of digital radiography systems for clinical use

    Get PDF
    Digital imaging has long been available in radiology in the form of computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound. Initially the transition to general radiography was slow and fragmented but in the last 10-15 years in particular, huge investment by the manufacturers, greater and cheaper computing power, inexpensive digital storage and high bandwidth data transfer networks have lead to an enormous increase in the number of digital radiography systems in the UK. There are a number of competing digital radiography (DR) technologies, the most common are computer radiography (CR) systems followed by indirect digital radiography (IDR) systems. To ensure and maintain diagnostic quality and effectiveness in the radiology department appropriate methods are required to evaluate and optimise the performance of DR systems. Current semi-quantitative test object based methods routinely used to examine DR performance suffer known short comings, mainly due to the subjective nature of the test results and difficulty in maintaining a constant decision threshold among observers with time. Objective image quality based measurements of noise power spectra (NPS) and modulation transfer function (MTF) are the ‘gold standard’ for assessing image quality. Advantages these metrics afford are due to their objective nature, the comprehensive noise analysis they permit and in the fact that they have been reported to be relatively more sensitive to changes in detector performance. The advent of DR systems and access to digital image data has opened up new opportunities in applying such measurements to routine quality control and this project initially focuses on obtaining NPS and MTF results for 12 IDR systems in routine clinical use. Appropriate automatic exposure control (AEC) device calibration and a reproducible measurement method are key to optimising X-ray equipment for digital radiography. The uses of various parameters to calibrate AEC devices specifically for DR were explored in the next part of the project and calibration methods recommended. Practical advice on dosemeter selection, measurement technique and phantoms were also given. A model was developed as part of the project to simulate CNR to optimise beam quality for chest radiography with an IDR system. The values were simulated for a chest phantom and adjusted to describe the performance of the system by inputting data on phosphor sensitivity, the signal transfer function (STF), the scatter removal method and the automatic exposure control (AEC) responses. The simulated values showed good agreement with empirical data measured from images of the phantom and so provide validation of the calculation methodology. It was then possible to apply the calculation technique to imaging of tissues to investigate optimisation of exposure parameters. The behaviour of a range of imaging phosphors in terms of energy response and variation in CNR with tube potential and various filtration options were investigated. Optimum exposure factors were presented in terms of kV-mAs regulation curves and the large dose savings achieved using additional metal filters were emphasised. Optimum tube potentials for imaging a simulated lesion in patient equivalent thicknesses of water ranging from 5-40 cm thick for example were: 90-110kVp for CsI (IDR); 80-100kVp for Gd2O2S (screen /film); and 65-85kVp for BaFBrI. Plots of CNR values allowed useful conclusions regarding the expected clinical operation of the various DR phosphors. For example 80-90 kVp was appropriate for maintaining image quality over an entire chest radiograph in CR whereas higher tube potentials of 100-110 kVp were indicated for the CsI IDR system. Better image quality is achievable for pelvic radiographs at lower tube potentials for the majority of detectors however, for gadolinium oxysulphide 70-80 kVp gives the best image quality. The relative phosphor sensitivity and energy response with tube potential were also calculated for a range of DR phosphors. Caesium iodide image receptors were significantly more sensitive than the other systems. The percentage relative sensitivities of the image receptors averaged over the diagnostic kV range were used to provide a method of indicating what the likely clinically operational dose levels would be, for example results suggested 1.8 µGy for CsI (IDR); 2.8 µGy for Gd2O2S (Screen/film); and 3.8 µGy for BaFBrI (CR). The efficiency of scatter reduction methods for DR using a range of grids and air gaps were also reviewed. The performance of various scatter reduction methods: 17/70; 15/80; 8/40 Pb grids and 15 cm and 20 cm air gaps were evaluated in terms of the improvement in CNR they afford, using two different models. The first, simpler model assumed quantum noise only and a photon counting detector. The second model incorporated quantum noise and system noise for a specific CsI detector and assumed the detector was energy integrating. Both models allowed the same general conclusions and suggest improved performance for air gaps over grids for medium to low scatter factors and both models suggest the best choice of grid for digital systems is the 15/80 grid, achieving comparable or better performance than air gaps for high scatter factors. The development, analysis and discussion of AEC calibration, CNR value, phosphor energy response, and scatter reduction methods are then brought together to form a practical step by step recipe that may be followed to optimise digital technology for clinical use. Finally, CNR results suggest the addition of 0.2 mm of copper filtration will have a negligible effect on image quality in DR. A comprehensive study examining the effect of copper filtration on image quality was performed using receiver operator characteristic (ROC) methodology to include observer performance in the analysis. A total of 3,600 observations from 80 radiographs and 3 observers were analysed to provide a confidence interval of 95% in detecting differences in image quality. There was no statistical difference found when 0.2 mm copper filtration was used and the benefit of the dose saving promote it as a valuable optimisation tool

    Application of a novel CCD technology to medical imaging

    Get PDF
    This thesis describes an evaluation of a novel low light level charge couple device (L3CCD) technology. Two L3CCDs have been fully evaluated in terms of their signal and noise properties. The primary aim of this work is to identify the device characteristics that affect the overall performance. Conclusions have been made to this end and a prediction of the optimal performance in terms of the device sensitivity is made. Comparisons with other detectors suitable for use in medical imaging have shown that the L3CCD surpasses other detectors in specific performance characteristics and is comparable in others. The competitive performance of the L3CCD confirms that it may afford benefits in those areas in which the L3CCD has superior performance compared to other detectors. Two diagnostic imaging techniques which were identified as applications of L3CCD technology have been investigated. Linear systems analysis has been used to predict the performance of two L3CCD based imaging systems for use in fluoroscopic imaging. Comparison of the predicted performance of the two system with systems in clinical use show that an L3CCD coupled to an x-ray phosphor via a tapered fibre optic is a competitive alternative to present fluoroscopic imaging systems. Experimental validation of the model has confirmed this conclusion. An L3 detector has been designed, built and evaluated for diffraction enhanced breast imaging. To demonstrate the use of the L3 detector for diffraction enhanced breast imaging it has been used to acquire diffraction images of human breast tissue with cancerous inclusions. Measurements of scatter contrast confirm improvements in scatter contrast compared to transmission contrast. The successful demonstration of the L3CCDs ability to collect diagnostic information has shown that the L3CCD is suitable for diffraction enhanced breast imaging

    Algoritmy pro multi-modální radiografii s novými zobrazovacími detektory.

    Get PDF
    Zobrazování v medicíně je technika, která nám umožňuje bez operativních zásahů vizua- lizovat vnitřní struktury lidského těla, abychom mohli diagnostikovat nemoci. Umožňuje nám taky monitorování fyzikálních procesů a funkcí různých orgánů v těle. Obor medi- cínského zobrazování obsahuje širokou škálu metod založených na různých fyzikálních principech. Součástí tohoto oboru jsou i metody používající ionizující záření. Kvalita na- měřených snímků silně závisi na použitých zobrazovacích detektorech. Existuje celá řada různých typů detektorů, od čistě analogových (filmy) až po plně digitální detektory jako jsou flat panely, které jsou v dnešní době nejrozšířenější. Novější typy dektorů využívají technologie počítání fotonů a nejmodernější experimentální detektory jako například Me- dipix jsou schopné detekovat a analyzovat jednotlivé fotony. Tato práce studuje vlastnoti, parametery a možné aplikační využití nejvnovejšího detek- toru Timepix3 z rodiny detektorů Medipix v různých zobrazovacích modalitách. Nejprve byl vyvinut nový vyčítací hardware a akviziční software společně s novými kalibračními a korekčními metodami. Poté byly postupně prozkoumány různé módy Timepix3 detek- toru: velmi rychlá spektrální radiografie, která demonstruje velmi rychlé měření "barev- ných"rentgenových obrázků; jednofotovná...Medical imaging is a technique that allows us to visualize non surgically the internal structure of the human body in order to diagnose or treat medical conditions. It permits also monitoring of physical processes or functions of different organs inside the body. The medical imaging encompasses wide range of techniques based on different physical prin- ciples, including techniques using ionizing radiation. The quality of the images depends significantly on the quality of the used imaging detectors. There are many types of the detectors, from old analog devices (e.g. films) to fully digital detectors such as flat panels, that are the most widely used today. The newer technology is being developed and the techniques such as photon counting explored. However, the state of the art technology is the single photon counting, where the experimental detectors such as Medipix are able to count and process each individual photon. This works studies the properties, features and applications of the newest detector from the Medipix family Timepix3 in different imaging modalities. Firstly, a design of a new hardware readout interface for Timepix3 is presented together with data acquisition software and new analysis and calibration algorithms. Then, different applications of Timepix3 detector were explored: very...Ústav patologické fyziologie 1. LF UKInstitute of Pathological Physiology First Faculty of Medicine Charles University1. lékařská fakultaFirst Faculty of Medicin

    Guidebook on Detection Technologies and Systems for Humanitarian Demining

    Get PDF
    The aim of this publication is to provide the mine action community, and those supporting mine action, with a consolidated review and status summary of detection technologies that could be applied to humanitarian demining operations. This Guidebook is meant to provide information to a wide variety of readers. For those not familiar with the spectrum of technologies being considered for the detection of landmines and for area reduction, there is a brief overview of the principle of operation for each technology as well as a summary listing of the strengths, limitations, and potential for use of the technology to humanitarian demining. For those with an intermediate level of understanding for detection technologies, there is information regarding some of the more technical details of the system to give an expanded overview of the principles involved and hardware development that has taken place. Where possible, technical specifications for the systems are provided. For those requiring more information for a particular system, relevant publications lists and contact information are also provided

    An investigation into the use of charge-coupled devices for digital mammography

    Get PDF
    This thesis describes the design, optimisation, construction and evaluation of a laboratory based digital mammography system which uses phosphor coated charge-coupled devices (CCDs) for x-ray detection. The size mismatch between the breast and the CCD is overcome by operating the CCD in time delay and integration (TDI) mode and scanning across the breast. Multiparameter optimisations have been carried out for a wide range of digital mammography system configurations and requirements, with the aim of optimising the image quality for a given patient dose. The influence of slot width, exposure time, focal spot size, detector resolution and noise level, dose restrictions, patient thickness and x- ray tube target on the system configuration to give optimum image quality is examined. The system is fully characterised in terms of responsivity, dark current, modulation transfer functions (MTFs), noise power spectra (NPS) and spatial frequency dependent detective quantum efficiency (DQE(f)). Direct interactions of x-rays with the CCD are shown to give a significant increase in the high frequency values of the MTF. These interactions also act as a source of noise and act to significantly reduce the DQE(f) at all frequencies. A subjective comparison of images produced with the optimised prototype system with those produced using a conventional film-screen detector shows that these interactions must be removed if the prototype system is to produce images of equal quality to those currently produced using film-screen combinations. Other improvements to the system are suggested

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further
    corecore