4,637 research outputs found

    DFPENet-geology: A Deep Learning Framework for High Precision Recognition and Segmentation of Co-seismic Landslides

    Full text link
    The following lists two main reasons for withdrawal for the public. 1. There are some problems in the method and results, and there is a lot of room for improvement. In terms of method, "Pre-trained Datasets (PD)" represents selecting a small amount from the online test set, which easily causes the model to overfit the online test set and could not obtain robust performance. More importantly, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to revisit the section of geological feature fusion, in terms of results, we need to further improve and refine. 2. arXiv is an open-access repository of electronic preprints without peer reviews. However, for our own research, we need experts to provide comments on my work whether negative or positive. I then would use their comments to significantly improve this manuscript. Therefore, we finally decided to withdraw this manuscript in arXiv, and we will update to arXiv with the final accepted manuscript to facilitate more researchers to use our proposed comprehensive and general scheme to recognize and segment seismic landslides more efficiently.Comment: 1. There are some problems in the method and results, and there is a lot of room for improvement. Overall, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to further improve and refine the results. 2. For our own research, we need experts to provide comments on my work whether negative or positiv

    Relevance of UAV and sentinel-2 data fusion for estimating topsoil organic carbon after forest fire

    Get PDF
    [EN] The evaluation at detailed spatial scale of soil status after severe fires may provide useful information on the recovery of burned forest ecosystems. Here, we aimed to assess the potential of combining multispectral imagery at different spectral and spatial resolutions to estimate soil indicators of burn severity. The study was conducted in a burned area located at the northwest of the Iberian Peninsula (Spain). One month after fire, we measured soil burn severity in the field using an adapted protocol of the Composite Burn Index (CBI). Then, we performed soil sampling to analyze three soil properties potentially indicatives of fire-induced changes: mean weight diameter (MWD), soil moisture content (SMC) and soil organic carbon (SOC). Additionally, we collected post-fire imagery from the Sentinel-2A MSI satellite sensor (10โ€“20 m of spatial resolution), as well as from a Parrot Sequoia camera on board an unmanned aerial vehicle (UAV; 0.50 m of spatial resolution). A Gram-Schmidt (GS) image sharpening technique was used to increase the spatial resolution of Sentinel-2 bands and to fuse these data with UAV information. The performance of soil parameters as indicators of soil burn severity was determined trough a machine learning decision tree, and the relationship between soil indicators and reflectance values (UAV, Sentinel-2 and fused UAV-Sentinel-2 images) was analyzed by means of support vector machine (SVM) regression models. All the considered soil parameters decreased their value with burn severity, but soil moisture content, and, to a lesser extent, soil organic carbon discriminated at best among soil burn severity classes (accuracy = 91.18 %; Kappa = 0.82). The performance of reflectance values derived from the fused UAV-Sentinel-2 image to monitor the effects of wildfire on soil characteristics was outstanding, particularly for the case of soil organic carbon content (R2 = 0.52; RPD = 1.47). This study highlights the advantages of combining satellite and UAV images to produce spatially and spectrally enhanced images, which may be relevant for estimating main impacts on soil properties in burned forest areas where emergency actions need to be applied.S

    ๋ณต๋ถ€ CT์—์„œ ๊ฐ„๊ณผ ํ˜ˆ๊ด€ ๋ถ„ํ•  ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€,2020. 2. ์‹ ์˜๊ธธ.๋ณต๋ถ€ ์ „์‚ฐํ™” ๋‹จ์ธต ์ดฌ์˜ (CT) ์˜์ƒ์—์„œ ์ •ํ™•ํ•œ ๊ฐ„ ๋ฐ ํ˜ˆ๊ด€ ๋ถ„ํ• ์€ ์ฒด์  ์ธก์ •, ์น˜๋ฃŒ ๊ณ„ํš ์ˆ˜๋ฆฝ ๋ฐ ์ถ”๊ฐ€์ ์ธ ์ฆ๊ฐ• ํ˜„์‹ค ๊ธฐ๋ฐ˜ ์ˆ˜์ˆ  ๊ฐ€์ด๋“œ์™€ ๊ฐ™์€ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š”๋ฐ ํ•„์ˆ˜์ ์ธ ์š”์†Œ์ด๋‹ค. ์ตœ๊ทผ ๋“ค์–ด ์ปจ๋ณผ๋ฃจ์…”๋„ ์ธ๊ณต ์‹ ๊ฒฝ๋ง (CNN) ํ˜•ํƒœ์˜ ๋”ฅ ๋Ÿฌ๋‹์ด ๋งŽ์ด ์ ์šฉ๋˜๋ฉด์„œ ์˜๋ฃŒ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋˜๊ณ  ์žˆ์ง€๋งŒ, ์‹ค์ œ ์ž„์ƒ์— ์ ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋†’์€ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ธฐ๋Š” ์—ฌ์ „ํžˆ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ๋ฌผ์ฒด์˜ ๊ฒฝ๊ณ„๋Š” ์ „ํ†ต์ ์œผ๋กœ ์˜์ƒ ๋ถ„ํ• ์—์„œ ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ๋กœ ์ด์šฉ๋˜์—ˆ์ง€๋งŒ, CT ์˜์ƒ์—์„œ ๊ฐ„์˜ ๋ถˆ๋ถ„๋ช…ํ•œ ๊ฒฝ๊ณ„๋ฅผ ์ถ”์ถœํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ํ˜„๋Œ€ CNN์—์„œ๋Š” ์ด๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ•  ์ž‘์—…์˜ ๊ฒฝ์šฐ, ๋ณต์žกํ•œ ํ˜ˆ๊ด€ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค๊ธฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋”ฅ ๋Ÿฌ๋‹์„ ์ ์šฉํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๋˜ํ•œ ์–‡์€ ํ˜ˆ๊ด€ ๋ถ€๋ถ„์˜ ์˜์ƒ ๋ฐ๊ธฐ ๋Œ€๋น„๊ฐ€ ์•ฝํ•˜์—ฌ ์›๋ณธ ์˜์ƒ์—์„œ ์‹๋ณ„ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์œ„ ์–ธ๊ธ‰ํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ CNN๊ณผ ์–‡์€ ํ˜ˆ๊ด€์„ ํฌํ•จํ•˜๋Š” ๋ณต์žกํ•œ ๊ฐ„ ํ˜ˆ๊ด€์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ถ„ํ• ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ„ ๋ถ„ํ•  ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฐ–๋Š” CNN์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•ด, ๋‚ด๋ถ€์ ์œผ๋กœ ๊ฐ„ ๋ชจ์–‘์„ ์ถ”์ •ํ•˜๋Š” ๋ถ€๋ถ„์ด ํฌํ•จ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, CNN์„ ์‚ฌ์šฉํ•œ ํ•™์Šต์— ๊ฒฝ๊ณ„์„ ์˜ ๊ฐœ๋…์ด ์ƒˆ๋กญ๊ฒŒ ์ œ์•ˆ๋œ๋‹ค. ๋ชจํ˜ธํ•œ ๊ฒฝ๊ณ„๋ถ€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ์ „์ฒด ๊ฒฝ๊ณ„ ์˜์—ญ์„ CNN์— ํ›ˆ๋ จํ•˜๋Š” ๊ฒƒ์€ ๋งค์šฐ ์–ด๋ ต๊ธฐ ๋•Œ๋ฌธ์— ๋ฐ˜๋ณต๋˜๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์ด ์Šค์Šค๋กœ ์˜ˆ์ธกํ•œ ํ™•๋ฅ ์—์„œ ๋ถ€์ •ํ™•ํ•˜๊ฒŒ ์ถ”์ •๋œ ๋ถ€๋ถ„์  ๊ฒฝ๊ณ„๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ณต ์‹ ๊ฒฝ๋ง์„ ํ•™์Šตํ•œ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ CNN์ด ๋‹ค๋ฅธ ์ตœ์‹  ๊ธฐ๋ฒ•๋“ค๋ณด๋‹ค ์ •ํ™•๋„๊ฐ€ ์šฐ์ˆ˜ํ•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ CNN์˜ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ๋Š” ๊ฐ„ ๋‚ด๋ถ€์˜ ๊ด€์‹ฌ ์˜์—ญ์„ ์ง€์ •ํ•˜๊ธฐ ์œ„ํ•ด ์•ž์„œ ํš๋“ํ•œ ๊ฐ„ ์˜์—ญ์„ ํ™œ์šฉํ•œ๋‹ค. ์ •ํ™•ํ•œ ๊ฐ„ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์œ„ํ•ด ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ์ถ”์ถœํ•˜์—ฌ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ํ™•์‹คํ•œ ํ›„๋ณด ์ ๋“ค์„ ์–ป๊ธฐ ์œ„ํ•ด, ์‚ผ์ฐจ์› ์˜์ƒ์˜ ์ฐจ์›์„ ๋จผ์ € ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์ด์ฐจ์›์œผ๋กœ ๋‚ฎ์ถ˜๋‹ค. ์ด์ฐจ์› ์˜์ƒ์—์„œ๋Š” ๋ณต์žกํ•œ ํ˜ˆ๊ด€์˜ ๊ตฌ์กฐ๊ฐ€ ๋ณด๋‹ค ๋‹จ์ˆœํ™”๋  ์ˆ˜ ์žˆ๋‹ค. ์ด์–ด์„œ, ์ด์ฐจ์› ์˜์ƒ์—์„œ ํ˜ˆ๊ด€ ๋ถ„ํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ํ˜ˆ๊ด€ ํ”ฝ์…€๋“ค์€ ์›๋ž˜์˜ ์‚ผ์ฐจ์› ๊ณต๊ฐ„์ƒ์œผ๋กœ ์—ญ ํˆฌ์˜๋œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ „์ฒด ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์„ ์œ„ํ•ด ์›๋ณธ ์˜์ƒ๊ณผ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋ณต์žกํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹จ์ˆœํ™”๋˜๊ณ  ์–‡์€ ํ˜ˆ๊ด€์ด ๋” ์ž˜ ๋ณด์ด๋Š” ์ด์ฐจ์› ์˜์ƒ์—์„œ ์–ป์€ ํ›„๋ณด ์ ๋“ค์„ ์‚ฌ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์–‡์€ ํ˜ˆ๊ด€ ๋ถ„ํ• ์—์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ์— ์˜ํ•˜๋ฉด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž˜๋ชป๋œ ์˜์—ญ์˜ ์ถ”์ถœ ์—†์ด ๋‹ค๋ฅธ ๋ ˆ๋ฒจ ์…‹ ๊ธฐ๋ฐ˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„๊ณผ ํ˜ˆ๊ด€์„ ๋ถ„ํ• ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž๋™ ์ปจํ…์ŠคํŠธ ๊ตฌ์กฐ๋Š” ์‚ฌ๋žŒ์ด ๋””์ž์ธํ•œ ํ•™์Šต ๊ณผ์ •์ด ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ์„ ํฌ๊ฒŒ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ œ์•ˆ๋œ ๊ฒฝ๊ณ„์„  ํ•™์Šต ๊ธฐ๋ฒ•์œผ๋กœ CNN์„ ์‚ฌ์šฉํ•œ ์˜์ƒ ๋ถ„ํ• ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ์Œ์„ ๋‚ดํฌํ•œ๋‹ค. ๊ฐ„ ํ˜ˆ๊ด€์˜ ๋ถ„ํ• ์€ ์ด์ฐจ์› ์ตœ๋Œ€ ๊ฐ•๋„ ํˆฌ์˜ ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ํš๋“๋œ ํ˜ˆ๊ด€ ํ›„๋ณด ์ ๋“ค์„ ํ†ตํ•ด ์–‡์€ ํ˜ˆ๊ด€๋“ค์ด ์„ฑ๊ณต์ ์œผ๋กœ ๋ถ„ํ• ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ฐ„์˜ ํ•ด๋ถ€ํ•™์  ๋ถ„์„๊ณผ ์ž๋™ํ™”๋œ ์ปดํ“จํ„ฐ ์ง„๋‹จ ๋ณด์กฐ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•œ ๊ธฐ์ˆ ์ด๋‹ค.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 ์ดˆ๋ก 197Docto

    VPRS-based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images

    Get PDF
    Recent advances in computer vision and pattern recognition have demonstrated the superiority of deep neural networks using spatial feature representation, such as convolutional neural networks (CNN), for image classification. However, any classifier, regardless of its model structure (deep or shallow), involves prediction uncertainty when classifying spatially and spectrally complicated very fine spatial resolution (VFSR) imagery. We propose here to characterise the uncertainty distribution of CNN classification and integrate it into a regional decision fusion to increase classification accuracy. Specifically, a variable precision rough set (VPRS) model is proposed to quantify the uncertainty within CNN classifications of VFSR imagery, and partition this uncertainty into positive regions (correct classifications) and non-positive regions (uncertain or incorrect classifications). Those โ€œmore correctโ€ areas were trusted by the CNN, whereas the uncertain areas were rectified by a Multi-Layer Perceptron (MLP)-based Markov random field (MLP-MRF) classifier to provide crisp and accurate boundary delineation. The proposed MRF-CNN fusion decision strategy exploited the complementary characteristics of the two classifiers based on VPRS uncertainty description and classification integration. The effectiveness of the MRF-CNN method was tested in both urban and rural areas of southern England as well as Semantic Labelling datasets. The MRF-CNN consistently outperformed the benchmark MLP, SVM, MLP-MRF and CNN and the baseline methods. This research provides a regional decision fusion framework within which to gain the advantages of model-based CNN, while overcoming the problem of losing effective resolution and uncertain prediction at object boundaries, which is especially pertinent for complex VFSR image classification
    • โ€ฆ
    corecore