631 research outputs found

    SOFA: A Multi-Model Framework for Interactive Physical Simulation

    Get PDF
    International audienceSOFA (Simulation Open Framework Architecture) is an open-source C++ library primarily targeted at interactive computational medical simulation. SOFA facilitates collaborations between specialists from various domains, by decomposing complex simulators into components designed independently and organized in a scenegraph data structure. Each component encapsulates one of the aspects of a simulation, such as the degrees of freedom, the forces and constraints, the differential equations, the main loop algorithms, the linear solvers, the collision detection algorithms or the interaction devices. The simulated objects can be represented using several models, each of them optimized for a different task such as the computation of internal forces, collision detection, haptics or visual display. These models are synchronized during the simulation using a mapping mechanism. CPU and GPU implementations can be transparently combined to exploit the computational power of modern hardware architectures. Thanks to this flexible yet efficient architecture, \sofa{} can be used as a test-bed to compare models and algorithms, or as a basis for the development of complex, high-performance simulators

    Haptic Rendering of Interacting Dynamic Deformable Objects Simulated in Real-Time at Different Frequencies

    Get PDF
    International audienceThe dynamic response of deformable bodies varies significantly in dependence on mechanical properties of the objects: while the dynamics of a stiff and light object (e. g. wire or needle) involves high-frequency phenomena such as vibrations, much lower frequencies are sufficient for capturing dynamic response of an object composed of a soft tissue. Yet, when simulating mechanical interactions between soft and stiff deformable models, a single time-step is usually employed to compute the time integration of dynamics of both objects. However, this can be a serious issue when haptic rendering of complex scenes composed of various bodies is considered. In this paper, we present a novel method allowing for dynamic simulation of a scene composed of colliding objects modelled at different frequencies: typically, the dynamics of soft objects are calculated at frequency about 50 Hz, while the dynamics of stiff object is modeled at 1 kHz, being directly connected to the computation of haptic force feedback. The collision response is performed at both low and high frequencies employing data structures which describe the actual constraints and are shared between the high and low frequency loops. During the simulation, the realistic behaviour of the objects according to the mechanical principles (such as non-interpenetration and action-reaction principle) is guaranteed. Examples showing the scenes involving different bodies in interaction are given, demonstrating the benefits of the proposed method

    Haptic Rendering of Hyperelastic Models with Friction

    Get PDF
    International audience— This paper presents an original method for inter-actions' haptic rendering when treating hyperelastic materials. Such simulations are known to be difficult due to the non-linear behavior of hyperelastic bodies; furthermore, haptic constraints enjoin contact forces to be refreshed at least at 1000 updates per second. To enforce the stability of simulations of generic objects of any range of stiffness, this method relies on implicit time integration. Soft tissues dynamics is simulated in real time (20 to 100 Hz) using the Multiplicative Jacobian Energy Decomposition (MJED) method. An asynchronous preconditioner, updated at low rates (1 to 10 Hz), is used to obtain a close approximation of the mechanical coupling of interactions. Finally, the contact problem is linearized and, using a specific-loop, it is updated at typical haptic rates (around 1000 Hz) allowing this way new simulations of prompt stiff-contacts and providing a continuous haptic feedback as well

    Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments

    Get PDF
    International audienceA new computer haptics algorithm to be used in general interactive manipulations of deformable virtual objects is presented. In multimodal interactive simulations, haptic feedback computation often comes from contact forces. Subsequently, the fidelity of haptic rendering depends significantly on contact space modeling. Contact and friction laws between deformable models are often simplified in up to date methods. They do not allow a "realistic" rendering of the subtleties of contact space physical phenomena (such as slip and stick effects due to friction or mechanical coupling between contacts). In this paper, we use Signorini's contact law and Coulomb's friction law as a computer haptics basis. Real-time performance is made possible thanks to a linearization of the behavior in the contact space, formulated as the so-called Delassus operator, and iteratively solved by a Gauss-Seidel type algorithm. Dynamic deformation uses corotational global formulation to obtain the Delassus operator in which the mass and stiffness ratio are dissociated from the simulation time step. This last point is crucial to keep stable haptic feedback. This global approach has been packaged, implemented, and tested. Stable and realistic 6D haptic feedback is demonstrated through a clipping task experiment

    Real-Time Numerical Simulation for Accurate Soft Tissues Modeling during Haptic Interaction

    Get PDF
    The simulation of fabrics physics and its interaction with the human body has been largely studied in recent years to provide realistic-looking garments and wears specifically in the entertainment business. When the purpose of the simulation is to obtain scientific measures and detailed mechanical properties of the interaction, the underlying physical models should be enhanced to obtain better simulation accuracy increasing the modeling complexity and relaxing the simulation timing constraints to properly solve the set of equations under analysis. However, in the specific field of haptic interaction, the desiderata are to have both physical consistency and high frame rate to display stable and coherent stimuli as feedback to the user requiring a tradeoff between accuracy and real-time interaction. This work introduces a haptic system for the evaluation of the fabric hand of specific garments either existing or yet to be produced in a virtual reality simulation. The modeling is based on the co-rotational Finite Element approach that allows for large displacements but the small deformation of the elements. The proposed system can be beneficial for the fabrics industry both in the design phase or in the presentation phase, where a virtual fabric portfolio can be shown to customers around the world. Results exhibit the feasibility of high-frequency real-time simulation for haptic interaction with virtual garments employing realistic mechanical properties of the fabric materials

    Fast audio-haptic prototyping with mass-interaction physics

    Get PDF
    International audienceThis paper presents ongoing work on the topic of physical modelling and force-feedback interaction. Specifically, it proposes a frame- work for rapidly prototyping virtual objects and scenes by means of mass-interaction models, and coupling the user and these objects via an affordable multi-DoF haptic device. The modelled objects can be computed at the rate of the haptic loop, but can also operate at a higher audio-rate, producing sound. The open-source design and overall simplicity of the proposed system makes it an interesting solution for introducing both physical simulations and force-feedback interaction, and also for applications in artistic creation. This first implementation prefigures current work conducted on the develop- ment of modular open-source mass-interaction physics tools for the design of haptic and multisensory applications
    • …
    corecore