642 research outputs found

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Enactivism and Robotic Language Acquisition: A Report from the Frontier

    Get PDF
    In this article, I assess an existing language acquisition architecture, which was deployed in linguistically unconstrained human–robot interaction, together with experimental design decisions with regard to their enactivist credentials. Despite initial scepticism with respect to enactivism’s applicability to the social domain, the introduction of the notion of participatory sense-making in the more recent enactive literature extends the framework’s reach to encompass this domain. With some exceptions, both our architecture and form of experimentation appear to be largely compatible with enactivist tenets. I analyse the architecture and design decisions along the five enactivist core themes of autonomy, embodiment, emergence, sense-making, and experience, and discuss the role of affect due to its central role within our acquisition experiments. In conclusion, I join some enactivists in demanding that interaction is taken seriously as an irreducible and independent subject of scientific investigation, and go further by hypothesising its potential value to machine learning.Peer reviewedFinal Published versio

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Development of Cognitive Capabilities in Humanoid Robots

    Get PDF
    Merged with duplicate record 10026.1/645 on 03.04.2017 by CS (TIS)Building intelligent systems with human level of competence is the ultimate grand challenge for science and technology in general, and especially for the computational intelligence community. Recent theories in autonomous cognitive systems have focused on the close integration (grounding) of communication with perception, categorisation and action. Cognitive systems are essential for integrated multi-platform systems that are capable of sensing and communicating. This thesis presents a cognitive system for a humanoid robot that integrates abilities such as object detection and recognition, which are merged with natural language understanding and refined motor controls. The work includes three studies; (1) the use of generic manipulation of objects using the NMFT algorithm, by successfully testing the extension of the NMFT to control robot behaviour; (2) a study of the development of a robotic simulator; (3) robotic simulation experiments showing that a humanoid robot is able to acquire complex behavioural, cognitive, and linguistic skills through individual and social learning. The robot is able to learn to handle and manipulate objects autonomously, to cooperate with human users, and to adapt its abilities to changes in internal and environmental conditions. The model and the experimental results reported in this thesis, emphasise the importance of embodied cognition, i.e. the humanoid robot's physical interaction between its body and the environment

    Embodied Language Learning and Cognitive Bootstrapping:Methods and Design Principles

    Get PDF
    Co-development of action, conceptualization and social interaction mutually scaffold and support each other within a virtuous feedback cycle in the development of human language in children. Within this framework, the purpose of this article is to bring together diverse but complementary accounts of research methods that jointly contribute to our understanding of cognitive development and in particular, language acquisition in robots. Thus, we include research pertaining to developmental robotics, cognitive science, psychology, linguistics and neuroscience, as well as practical computer science and engineering. The different studies are not at this stage all connected into a cohesive whole; rather, they are presented to illuminate the need for multiple different approaches that complement each other in the pursuit of understanding cognitive development in robots. Extensive experiments involving the humanoid robot iCub are reported, while human learning relevant to developmental robotics has also contributed useful results. Disparate approaches are brought together via common underlying design principles. Without claiming to model human language acquisition directly, we are nonetheless inspired by analogous development in humans and consequently, our investigations include the parallel co-development of action, conceptualization and social interaction. Though these different approaches need to ultimately be integrated into a coherent, unified body of knowledge, progress is currently also being made by pursuing individual methods

    Embodied language learning and cognitive bootstrapping: methods and design principles

    Get PDF
    Co-development of action, conceptualization and social interaction mutually scaffold and support each other within a virtuous feedback cycle in the development of human language in children. Within this framework, the purpose of this article is to bring together diverse but complementary accounts of research methods that jointly contribute to our understanding of cognitive development and in particular, language acquisition in robots. Thus, we include research pertaining to developmental robotics, cognitive science, psychology, linguistics and neuroscience, as well as practical computer science and engineering. The different studies are not at this stage all connected into a cohesive whole; rather, they are presented to illuminate the need for multiple different approaches that complement each other in the pursuit of understanding cognitive development in robots. Extensive experiments involving the humanoid robot iCub are reported, while human learning relevant to developmental robotics has also contributed useful results. Disparate approaches are brought together via common underlying design principles. Without claiming to model human language acquisition directly, we are nonetheless inspired by analogous development in humans and consequently, our investigations include the parallel co-development of action, conceptualization and social interaction. Though these different approaches need to ultimately be integrated into a coherent, unified body of knowledge, progress is currently also being made by pursuing individual methods

    From social brains to social robots: applying neurocognitive insights to human-robot interaction

    Get PDF
    Amidst the fourth industrial revolution, social robots are resolutely moving from fiction to reality. With sophisticated artificial agents becoming ever more ubiquitous in daily life, researchers across different fields are grappling with the questions concerning how humans perceive and interact with these agents and the extent to which the human brain incorporates intelligent machines into our social milieu. This theme issue surveys and discusses the latest findings, current challenges and future directions in neuroscience- and psychology-inspired human–robot interaction (HRI). Critical questions are explored from a transdisciplinary perspective centred around four core topics in HRI: technical solutions for HRI, development and learning for HRI, robots as a tool to study social cognition, and moral and ethical implications of HRI. Integrating findings from diverse but complementary research fields, including social and cognitive neurosciences, psychology, artificial intelligence and robotics, the contributions showcase ways in which research from disciplines spanning biological sciences, social sciences and technology deepen our understanding of the potential and limits of robotic agents in human social life

    Social Cognition for Human-Robot Symbiosis—Challenges and Building Blocks

    Get PDF
    The next generation of robot companions or robot working partners will need to satisfy social requirements somehow similar to the famous laws of robotics envisaged by Isaac Asimov time ago (Asimov, 1942). The necessary technology has almost reached the required level, including sensors and actuators, but the cognitive organization is still in its infancy and is only partially supported by the current understanding of brain cognitive processes. The brain of symbiotic robots will certainly not be a “positronic” replica of the human brain: probably, the greatest part of it will be a set of interacting computational processes running in the cloud. In this article, we review the challenges that must be met in the design of a set of interacting computational processes as building blocks of a cognitive architecture that may give symbiotic capabilities to collaborative robots of the next decades: (1) an animated body-schema; (2) an imitation machinery; (3) a motor intentions machinery; (4) a set of physical interaction mechanisms; and (5) a shared memory system for incremental symbiotic development. We would like to stress that our approach is totally un-hierarchical: the five building blocks of the shared cognitive architecture are fully bi-directionally connected. For example, imitation and intentional processes require the “services” of the animated body schema which, on the other hand, can run its simulations if appropriately prompted by imitation and/or intention, with or without physical interaction. Successful experiences can leave a trace in the shared memory system and chunks of memory fragment may compete to participate to novel cooperative actions. And so on and so forth. At the heart of the system is lifelong training and learning but, different from the conventional learning paradigms in neural networks, where learning is somehow passively imposed by an external agent, in symbiotic robots there is an element of free choice of what is worth learning, driven by the interaction between the robot and the human partner. The proposed set of building blocks is certainly a rough approximation of what is needed by symbiotic robots but we believe it is a useful starting point for building a computational framework
    corecore