113 research outputs found

    A Certificateless One-Way Group Key Agreement Protocol for End-to-End Email Encryption

    Get PDF
    Over the years, email has evolved into one of the most widely used communication channels for both individuals and organizations. However, despite near ubiquitous use in much of the world, current information technology standards do not place emphasis on email security. Not until recently, webmail services such as Yahoo\u27s mail and Google\u27s gmail started to encrypt emails for privacy protection. However, the encrypted emails will be decrypted and stored in the service provider\u27s servers. If the servers are malicious or compromised, all the stored emails can be read, copied and altered. Thus, there is a strong need for end-to-end (E2E) email encryption to protect email user\u27s privacy. In this paper, we present a certificateless one-way group key agreement protocol with the following features, which are suitable to implement E2E email encryption: (1) certificateless and thus there is no key escrow problem and no public key certificate infrastructure is required; (2) one-way group key agreement and thus no back-and-forth message exchange is required; and (3) n-party group key agreement (not just 2- or 3-party). This paper also provides a security proof for the proposed protocol using proof by simulation . Finally, efficiency analysis of the protocol is presented at the end of the paper

    A Certificateless One-Way Group Key Agreement Protocol for Point-to-Point Email Encryption

    Get PDF
    Over the years, email has evolved and grown to one of the most widely used form of communication between individuals and organizations. Nonetheless, the current information technology standards do not value the significance of email security in today\u27s technologically advanced world. Not until recently, email services such as Yahoo and Google started to encrypt emails for privacy protection. Despite that, the encrypted emails will be decrypted and stored in the email service provider\u27s servers as backup. If the server is hacked or compromised, it can lead to leakage and modification of one\u27s email. Therefore, there is a strong need for point-to-point (P2P) email encryption to protect email user\u27s privacy. P2P email encryption schemes strongly rely on the underlying Public Key Cryptosystems (PKC). The evolution of the public key cryptography from the traditional PKC to the Identity-based PKC (ID-PKC) and then to the Certificateless PKC (CL-PKC) provides a better and more suitable cryptosystem to implement P2P email encryption. Many current public-key based cryptographic protocols either suffer from the expensive public-key certificate infrastructure (in traditional PKC) or the key escrow problem (in ID-PKC). CL-PKC is a relatively new cryptosystem that was designed to overcome both problems. In this thesis, we present a CL-PKC group key agreement protocol, which is, as the author\u27s knowledge, the first one with all the following features in one protocol: (1) certificateless and thus there is no key escrow problem and no public key certificate infrastructure is required. (2) one-way group key agreement and thus no back-and-forth message exchange is required; (3) n-party group key agreement (not just 2- or 3-party); and (4) no secret channel is required for key distribution. With the above features, P2P email encryption can be implemented securely and efficiently. This thesis provides a security proof for the proposed protocol using ``proof by simulation\u27\u27. Efficiency analysis of the protocol is also presented in this thesis. In addition, we have implemented the prototypes (email encryption systems) in two different scenarios in this thesis

    Certificateless Signature Scheme Based on Rabin Algorithm and Discrete Logarithm

    Get PDF
    Certificateless signature can effectively immue the key escrow problem in the identity-based signature scheme. But the security of the most certificateless signatures usually depends on only one mathematical hard problem, which makes the signature vulnerable when the underlying hard problem has been broken. In order to strengthen the security, in this paper, a certificateless signature whose security depends on two mathematical hard problems, discrete logarithm and factoring problems, is proposed. Then, the proposed certificateless signature can be proved secure in the random oracle, and only both of the two mathematical hard problems are solved, can the proposed signature be broken. As a consequence, the proposed certificateless signature is more secure than the previous signatures. On the other hand, with the pre-computation of the exponential modular computation, it will save more time in the signature signing phase. And compared with the other schemes of this kind, the proposed scheme is more efficient

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short

    Toward an RSU-unavailable lightweight certificateless key agreement scheme for VANETs

    Get PDF
    Vehicle ad-hoc networks have developed rapidly these years, whose security and privacy issues are always concerned widely. In spite of a remarkable research on their security solutions, but in which there still lacks considerations on how to secure vehicle-to-vehicle communications, particularly when infrastructure is unavailable. In this paper, we propose a lightweight certificateless and one-round key agreement scheme without pairing, and further prove the security of the proposed scheme in the random oracle model. The proposed scheme is expected to not only resist known attacks with less computation cost, but also as an efficient way to relieve the workload of vehicle-to-vehicle authentication, especially in no available infrastructure circumstance. A comprehensive evaluation, including security analysis, efficiency analysis and simulation evaluation, is presented to confirm the security and feasibility of the proposed scheme

    APEX2S: A Two-Layer Machine Learning Model for Discovery of host-pathogen protein-protein Interactions on Cloud-based Multiomics Data

    Get PDF
    Presented by the avalanche of biological interactions data, computational biology is now facing greater challenges on big data analysis and solicits more studies to mine and integrate cloud-based multiomics data, especially when the data are related to infectious diseases. Meanwhile, machine learning techniques have recently succeeded in different computational biology tasks. In this article, we have calibrated the focus for host-pathogen protein-protein interactions study, aiming to apply the machine learning techniques for learning the interactions data and making predictions. A comprehensive and practical workflow to harness different cloud-based multiomics data is discussed. In particular, a novel two-layer machine learning model, namely APEX2S, is proposed for discovery of the protein-protein interactions data. The results show that our model can better learn and predict from the accumulated host-pathogen protein-protein interactions

    An Efficient Certificate-Based Designated Verifier Signature Scheme

    Get PDF
    Certificate-based public key cryptography not only solves certificate revocation problem in traditional PKI but also overcomes key escrow problem inherent in identity-based cryptosystems. This new primitive has become an attractive cryptographic paradigm. In this paper, we propose the notion and the security model of certificate-based designated verifier signatures (CBDVS). We provide the first construction of CBDVS and prove that our scheme is existentially unforgeable against adaptive chosen message attacks in the random oracle model. Our scheme only needs two pairing operations, and the signature is only one element in the bilinear group G1. To the best of our knowledge, our scheme enjoys shortest signature length with less operation cost

    A Comprehensive Survey on Signcryption Security Mechanisms in Wireless Body Area Networks

    Get PDF
    WBANs (Wireless Body Area Networks) are frequently depicted as a paradigm shift in healthcare from traditional to modern E-Healthcare. The vitals of the patient signs by the sensors are highly sensitive, secret, and vulnerable to numerous adversarial attacks. Since WBANs is a real-world application of the healthcare system, it’s vital to ensure that the data acquired by the WBANs sensors is secure and not accessible to unauthorized parties or security hazards. As a result, effective signcryption security solutions are required for the WBANs’ success and widespread use. Over the last two decades, researchers have proposed a slew of signcryption security solutions to achieve this goal. The lack of a clear and unified study in terms of signcryption solutions can offer a bird’s eye view of WBANs. Based on the most recent signcryption papers, we analyzed WBAN’s communication architecture, security requirements, and the primary problems in WBANs to meet the aforementioned objectives. This survey also includes the most up to date signcryption security techniques in WBANs environments. By identifying and comparing all available signcryption techniques in the WBANs sector, the study will aid the academic community in understanding security problems and causes. The goal of this survey is to provide a comparative review of the existing signcryption security solutions and to analyze the previously indicated solution given for WBANs. A multi-criteria decision-making approach is used for a comparative examination of the existing signcryption solutions. Furthermore, the survey also highlights some of the public research issues that researchers must face to develop the security features of WBANs.publishedVersio

    Efficient identity based signcryption scheme and solution of key-escrow problem

    Get PDF
    In cryptography for sending any information from sender to receiver, we have to ensure about the three types of security policies i.e. integrity, confidentiality and authentication. For confidentiality purpose, encryption-decryption technique is used and for authentication purpose digital signature is used, so to ensure this three properties, first sender encrypt the message and then sign the message. Same process done at the receiver end that means first message is decrypted then verified, so it's two step process that increases the communication as well as computation cost. But in many real life applications where more speed and less cost is required like e-commerce applications, we can't use signature then encryption technique, so signcryption is the cryptographic primitives that provides signature as well as encryption at the same time on a single step. First signcryption scheme is proposed by Yullian Zheng in 1997, Since then many signcryption scheme is proposed based on elliptic discrete logarithm problem (ECDLP) , Bilinear pairing, Identity Based and certificateless environment. Many of the Signcryption scheme used Random Oracle Model for their security proofs and few are based on standard model
    corecore