4 research outputs found

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review

    Get PDF
    The purpose of this paper is to survey and assess the state-of-the-art in automatic target recognition for synthetic aperture radar imagery (SAR-ATR). The aim is not to develop an exhaustive survey of the voluminous literature, but rather to capture in one place the various approaches for implementing the SAR-ATR system. This paper is meant to be as self-contained as possible, and it approaches the SAR-ATR problem from a holistic end-to-end perspective. A brief overview for the breadth of the SAR-ATR challenges is conducted. This is couched in terms of a single-channel SAR, and it is extendable to multi-channel SAR systems. Stages pertinent to the basic SAR-ATR system structure are defined, and the motivations of the requirements and constraints on the system constituents are addressed. For each stage in the SAR-ATR processing chain, a taxonomization methodology for surveying the numerous methods published in the open literature is proposed. Carefully selected works from the literature are presented under the taxa proposed. Novel comparisons, discussions, and comments are pinpointed throughout this paper. A two-fold benchmarking scheme for evaluating existing SAR-ATR systems and motivating new system designs is proposed. The scheme is applied to the works surveyed in this paper. Finally, a discussion is presented in which various interrelated issues, such as standard operating conditions, extended operating conditions, and target-model design, are addressed. This paper is a contribution toward fulfilling an objective of end-to-end SAR-ATR system design

    Investigation of non-cooperative target recognition of small and slow moving air targets in modern air defence surveillance radar

    Get PDF
    This thesis covers research in the field of non-cooperative target recognition given the limitations of modern air defence surveillance radars. The potential presence of low observable manned or unmanned targets within the vast surveillance volume demand highly sensitive systems. This may again introduce unwanted detections of single birds of comparable radar cross section, previously avoided by use of wide clutter rejection filters and sensitivity time control. The demand for methods effectively separating between birds and slow moving manmade targets is evident. The research questions addressed are connected to identification of characteristic features of birds and manmade targets of comparable size. Ultimately the goal has been to find methods that can utilize such features to effectively distinguish between the classes. In contrast to the vast majority of non-cooperative target recognition publications, this thesis includes non-rigid targets covering a range of dielectric properties and targets falling in the resonant and Rayleigh scattering regions. These factors combined with insufficient spatial resolution for classification require alternative approaches such as utilization of periodic RCS modulation, micro-Doppler- and polarimetric signatures. Signatures of birds and UAVs are investigated through electromagnetic prediction and radar measurements. A flexible and fully polarimetric radar capable of simultaneous operation in both L- and S-band is developed for collection of relevant signatures. Inspired by the use of polarimetric radar for classification of precipitation covered in the weather radar literature, focus has been on using similar methods to recognize signatures of rotors, propellers and bird wings. Novel micro-Doppler signatures combining polarimetric information from this sensor is found to hold information about the orientation of such target parts. This information combined with several other features is evaluated for classification. The benefit from involving polarimetric measurements is especially investigated, and is found to be highly valuable when information provided by other methods is limited
    corecore