85,334 research outputs found

    A Multi-Agent Congestion and Pricing Model

    Get PDF
    A multi-agent model of travelers competing to utilize a roadway in time and space is presented in this paper to illustrate the effect of congestion and pricing on traveler behaviors and network equilibrium. To realize the spillover effect among travelers, N-player games are constructed in which the strategy set include (N+1) strategies. We solve the discrete N-player game (for N less than 8) and find Nash equilibria if they exist. This model is compared to the bottleneck model. The results of numerical simulation show that the two models yield identical results in terms of lowest total costs and marginal costs when a social optimum exists.Agent-based Model, Game Theory, Congestion, Queueing, Traffic Flow, Congestion Pricing, Road Pricing, Value Pricing

    Selfish Routing on Dynamic Flows

    Get PDF
    Selfish routing on dynamic flows over time is used to model scenarios that vary with time in which individual agents act in their best interest. In this paper we provide a survey of a particular dynamic model, the deterministic queuing model, and discuss how the model can be adjusted and applied to different real-life scenarios. We then examine how these adjustments affect the computability, optimality, and existence of selfish routings.Comment: Oberlin College Computer Science Honors Thesis. Supervisor: Alexa Sharp, Oberlin Colleg

    Congestion phenomena caused by matching pennies in evolutionary games

    Get PDF
    Evolutionary social dilemma games are extended by an additional matching-pennies game that modifies the collected payoffs. In a spatial version players are distributed on a square lattice and interact with their neighbors. Firstly, we show that the matching-pennies game can be considered as the microscopic force of the Red Queen effect that breaks the detailed balance and induces eddies in the microscopic probability currents if the strategy update is analogous to the Glauber dynamics for the kinetic Ising models. The resulting loops in probability current breaks symmetry between the chessboard-like arrangements of strategies via a bottleneck effect occurring along the four-edge loops in the microscopic states. The impact of this congestion is analogous to the application of a staggered magnetic field in the Ising model, that is, the order-disorder critical transition is wiped out by noise. It is illustrated that the congestion induced symmetry breaking can be beneficial for the whole community within a certain region of parameters.Comment: 7 pages, 6 figure

    Complexity of coalition structure generation

    Get PDF
    We revisit the coalition structure generation problem in which the goal is to partition the players into exhaustive and disjoint coalitions so as to maximize the social welfare. One of our key results is a general polynomial-time algorithm to solve the problem for all coalitional games provided that player types are known and the number of player types is bounded by a constant. As a corollary, we obtain a polynomial-time algorithm to compute an optimal partition for weighted voting games with a constant number of weight values and for coalitional skill games with a constant number of skills. We also consider well-studied and well-motivated coalitional games defined compactly on combinatorial domains. For these games, we characterize the complexity of computing an optimal coalition structure by presenting polynomial-time algorithms, approximation algorithms, or NP-hardness and inapproximability lower bounds.Comment: 17 page

    Measuring the impact of game controllers on player experience in FPS games

    Get PDF
    An increasing amount of games is released on multiple platforms, and game designers face the challenge of integrating different interaction paradigms for console and PC users while keeping the core mechanics of a game. However, little research has addressed the influence of game controls on player experience. In this paper, we examine the impact of mouse and keyboard versus gamepad control in first-person shooters using the PC and PlayStation 3 versions of Battlefield: Bad Company 2. We conducted a study with 45 participants to compare player experience and game usability issues of participants who had previously played similar games on one of the respective gaming systems, while also exploring the effects of players being forced to switch to an unfamiliar platform. The results show that players switching to a new platform experience more usability issues and consider themselves more challenged, but report an equally positive overall experience as players on their comfort platform. © 2011 ACM

    Strategic Payments in Financial Networks

    Get PDF
    In their seminal work on systemic risk in financial markets, Eisenberg and Noe [Larry Eisenberg and Thomas Noe, 2001] proposed and studied a model with n firms embedded into a network of debt relations. We analyze this model from a game-theoretic point of view. Every firm is a rational agent in a directed graph that has an incentive to allocate payments in order to clear as much of its debt as possible. Each edge is weighted and describes a liability between the firms. We consider several variants of the game that differ in the permissible payment strategies. We study the existence and computational complexity of pure Nash and strong equilibria, and we provide bounds on the (strong) prices of anarchy and stability for a natural notion of social welfare. Our results highlight the power of financial regulation - if payments of insolvent firms can be centrally assigned, a socially optimal strong equilibrium can be found in polynomial time. In contrast, worst-case strong equilibria can be a factor of ?(n) away from optimal, and, in general, computing a best response is an NP-hard problem. For less permissible sets of strategies, we show that pure equilibria might not exist, and deciding their existence as well as computing them if they exist constitute NP-hard problems
    • …
    corecore