165 research outputs found

    Entanglement measurement of the quadrature components without the homodyne detection in the spatially multi-mode far-field

    Full text link
    We consider the measuring procedure that in principle allows to avoid the homodyne detection for the simultaneous selection of both quadrature components in the far-field. The scheme is based on the use of the coherent sources of the non-classical light. The possibilities of the procedure are illustrated on the basis of the use of pixellised sources, where the phase-locked sub-Poissonian lasers or the degenerate optical parametric oscillator generating above threshold are chosen as the pixels. The theory of the pixellised source of the spatio-temporal squeezed light is elaborated as a part of this investigation.Comment: 11 pages, 5 figures, RevTeX4. Submitted to Phys. Rev.

    Photon number correlation for quantum enhanced imaging and sensing

    Full text link
    In this review we present the potentialities and the achievements of the use of non-classical photon number correlations in twin beams (TWB) states for many applications, ranging from imaging to metrology. Photon number correlations in the quantum regime are easy to be produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where loosing one photon can completely compromise the state and its exploitable advantage. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon number counting) are performed, which allow probing transmission/absorption properties of a system, leading for example to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pairwise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, like wide field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off- single photon regime to the linear regime, in the same setup

    Quantifying the source of enhancement in experimental continuous variable quantum illumination

    Full text link
    A quantum illumination protocol exploits correlated light beams to enhance the probability of detection of a partially reflecting object lying in a very noisy background. Recently a simple photon-number-detection based implementation of a quantum illumination-like scheme has been provided in [Lopaeva {\it et al,}, Phys. Rev. Lett. {\bf 101}, 153603 (2013)] where the enhancement is preserved despite the loss of non-classicality. In the present paper we investigate the source for quantum advantage in that realization. We introduce an effective two-mode description of the light sources and analyze the mutual information as quantifier of total correlations in the effective two-mode picture. In the relevant regime of a highly thermalized background, we find that the improvement in the signal-to-noise ratio achieved by the entangled sources over the unentangled thermal ones amounts exactly to the ratio of the effective mutual informations of the corresponding sources. More precisely, both quantities tend to a common limit specified by the squared ratio of the respective cross-correlations. A thorough analysis of the experimental data confirms this theoretical result.Comment: 6 pages, 3 figures. Published versio

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Quantum Communication, Sensing and Measurement in Space

    Get PDF
    The main theme of the conclusions drawn for classical communication systems operating at optical or higher frequencies is that there is a well‐understood performance gain in photon efficiency (bits/photon) and spectral efficiency (bits/s/Hz) by pursuing coherent‐state transmitters (classical ideal laser light) coupled with novel quantum receiver systems operating near the Holevo limit (e.g., joint detection receivers). However, recent research indicates that these receivers will require nonlinear and nonclassical optical processes and components at the receiver. Consequently, the implementation complexity of Holevo‐capacityapproaching receivers is not yet fully ascertained. Nonetheless, because the potential gain is significant (e.g., the projected photon efficiency and data rate of MIT Lincoln Laboratory's Lunar Lasercom Demonstration (LLCD) could be achieved with a factor‐of‐20 reduction in the modulation bandwidth requirement), focused research activities on ground‐receiver architectures that approach the Holevo limit in space‐communication links would be beneficial. The potential gains resulting from quantum‐enhanced sensing systems in space applications have not been laid out as concretely as some of the other areas addressed in our study. In particular, while the study period has produced several interesting high‐risk and high‐payoff avenues of research, more detailed seedlinglevel investigations are required to fully delineate the potential return relative to the state‐of‐the‐art. Two prominent examples are (1) improvements to pointing, acquisition and tracking systems (e.g., for optical communication systems) by way of quantum measurements, and (2) possible weak‐valued measurement techniques to attain high‐accuracy sensing systems for in situ or remote‐sensing instruments. While these concepts are technically sound and have very promising bench‐top demonstrations in a lab environment, they are not mature enough to realistically evaluate their performance in a space‐based application. Therefore, it is recommended that future work follow small focused efforts towards incorporating practical constraints imposed by a space environment. The space platform has been well recognized as a nearly ideal environment for some of the most precise tests of fundamental physics, and the ensuing potential of scientific advances enabled by quantum technologies is evident in our report. For example, an exciting concept that has emerged for gravity‐wave detection is that the intermediate frequency band spanning 0.01 to 10 Hz—which is inaccessible from the ground—could be accessed at unprecedented sensitivity with a space‐based interferometer that uses shorter arms relative to state‐of‐the‐art to keep the diffraction losses low, and employs frequency‐dependent squeezed light to surpass the standard quantum limit sensitivity. This offers the potential to open up a new window into the universe, revealing the behavior of compact astrophysical objects and pulsars. As another set of examples, research accomplishments in the atomic and optics fields in recent years have ushered in a number of novel clocks and sensors that can achieve unprecedented measurement precisions. These emerging technologies promise new possibilities in fundamental physics, examples of which are tests of relativistic gravity theory, universality of free fall, frame‐dragging precession, the gravitational inverse‐square law at micron scale, and new ways of gravitational wave detection with atomic inertial sensors. While the relevant technologies and their discovery potentials have been well demonstrated on the ground, there exists a large gap to space‐based systems. To bridge this gap and to advance fundamental‐physics exploration in space, focused investments that further mature promising technologies, such as space‐based atomic clocks and quantum sensors based on atom‐wave interferometers, are recommended. Bringing a group of experts from diverse technical backgrounds together in a productive interactive environment spurred some unanticipated innovative concepts. One promising concept is the possibility of utilizing a space‐based interferometer as a frequency reference for terrestrial precision measurements. Space‐based gravitational wave detectors depend on extraordinarily low noise in the separation between spacecraft, resulting in an ultra‐stable frequency reference that is several orders of magnitude better than the state of the art of frequency references using terrestrial technology. The next steps in developing this promising new concept are simulations and measurement of atmospheric effects that may limit performance due to non‐reciprocal phase fluctuations. In summary, this report covers a broad spectrum of possible new opportunities in space science, as well as enhancements in the performance of communication and sensing technologies, based on observing, manipulating and exploiting the quantum‐mechanical nature of our universe. In our study we identified a range of exciting new opportunities to capture the revolutionary capabilities resulting from quantum enhancements. We believe that pursuing these opportunities has the potential to positively impact the NASA mission in both the near term and in the long term. In this report we lay out the research and development paths that we believe are necessary to realize these opportunities and capitalize on the gains quantum technologies can offer

    Quantum Phase Imaging using Spatial Entanglement

    Full text link
    Entangled photons have the remarkable ability to be more sensitive to signal and less sensitive to noise than classical light. Joint photons can sample an object collectively, resulting in faster phase accumulation and higher spatial resolution, while common components of noise can be subtracted. Even more, they can accomplish this while physically separate, due to the nonlocal properties of quantum mechanics. Indeed, nearly all quantum optics experiments rely on this separation, using individual point detectors that are scanned to measure coincidence counts and correlations. Scanning, however, is tedious, time consuming, and ill-suited for imaging. Moreover, the separation of beam paths adds complexity to the system while reducing the number of photons available for sampling, and the multiplicity of detectors does not scale well for greater numbers of photons and higher orders of entanglement. We bypass all of these problems here by directly imaging collinear photon pairs with an electron-multiplying CCD camera. We show explicitly the benefits of quantum nonlocality by engineering the spatial entanglement of the illuminating photons and introduce a new method of correlation measurement by converting time-domain coincidence counting into spatial-domain detection of selected pixels. We show that classical transport-of-intensity methods are applicable in the quantum domain and experimentally demonstrate nearly optimal (Heisenberg-limited) phase measurement for the given quantum illumination. The methods show the power of direct imaging and hold much potential for more general types of quantum information processing and control

    Manipulation and characterisation of two photon spectral correlation states in nonlinear devices

    Get PDF
    In quantum photonics, the requirement for photon pairs with specific quantum states has led to a demand for a fast, high resolution and accurate characterisation of photon pair sources. However, current quantum methods of characterisation suffer from limited accuracy and resolution, and only consist of intensity measurements that prevent access to phase-sensitive measurement photon pairs. A promising tool that addresses these challenges, uses the classical analogue of nonlinear processes to stimulate photon generation, yielding much higher count rates that allows for a higher resolution and accurate photon pair source characterisation. Furthermore, this classical measurement allows for an innovative method to perform full phase-sensitive quantum tomography of photon pair sources that was previous thought to be experimentally challenging to obtain. This thesis examines and compares the quantum and classical method of characterisation of spectral correlations in χ^3 nonlinear devices; namely two integrated silicon nanowires, and a highly nonlinear fibre. In the first study, we use stimulated nonlinear process to confirm the speed-up of characterisation of photon pairs and demonstrate that additional resolution is gained when compared to the traditional coincidence measurements with no increase in measurement time. By applying this technique with phase-sensitive amplification to another identical silicon nanowire, the first phase sensitive measurements are presented showing details that are otherwise hidden in traditional intensity measurements. Furthermore, phase-sensitive measurement of a highly nonlinear fibre shows that phase-sensitive measurements have excellent sensitivity to small features when compared to the traditional intensity measurements
    • 

    corecore