240 research outputs found

    Socio-cognitively inspired ant colony optimization

    Get PDF
    Recently we proposed an application of ant colony optimization (ACO) to simulate socio-cognitive features of a population, incorporating perspective-taking ability to generate differently acting ant colonies. Although our main goal was simulation, we took advantage of the fact that the quality of the constructed system was evaluated based on selected traveling salesman problem instances, and the resulting computing system became a metaheuristic, which turned out to be a promising method for solving discrete problems. In this paper, we extend the initial sets of populations driven by different perspective-taking inspirations, seeking both optimal configuration for solving a number of TSP benchmarks, at the same time constituting a tool for analyzing socio-cognitive features of the individuals involved. The proposed algorithms are compared against classic ACO, and are found to prevail in most of the benchmark functions tested

    Measuring diversity of socio-cognitively inspired ACO search

    Get PDF
    In our recent research, we implemented an enhancement of Ant Colony Optimization incorporating the socio-cognitive dimension of perspective taking. Our initial results suggested that increasing the diversity of ant population - introducing different pheromones, different species and dedicated inter-species relations - yielded better results. In this paper, we explore the diversity issue by introducing novel diversity measurement strategies for ACO. Based on these strategies we compare both classic ACO and its socio-cognitive variation

    Emergence of population structure in socio-cognitively inspired ant colony optimization

    Get PDF
    A metaheuristic proposed by us recently, Ant Colony  Optimization (ACO) hybridized with socio-cognitive inspirations, turned out to generate interesting results compared to classic ACO. Even though it does not always find better solutions to the considered problems, it usually finds sub-optimal solutions  usually. Moreover, instead of a trial-and-error approach to configure the parameters of the ant species in the population, in our approach, the actual structure of the population emerges from predefined species-to-species ant migration strategies. Experimental results of our approach are compared against classic ACO and selected socio-cognitive versions of this algorithm

    Stochastic Metaheuristics as Sampling Techniques using Swarm Intelligence

    Get PDF
    Optimization problems appear in many fields, as various as identification problems, supervised learning of neural networks, shortest path problems, etc. Metaheuristics [22] are a family of optimization algorithms, often applied to "hard " combinatorial problems for which no more efficient method is known. They have the advantage of being generi

    Stigmergic epistemology, stigmergic cognition

    Get PDF
    To know is to cognize, to cognize is to be a culturally bounded, rationality-bounded and environmentally located agent. Knowledge and cognition are thus dual aspects of human sociality. If social epistemology has the formation, acquisition, mediation, transmission and dissemination of knowledge in complex communities of knowers as its subject matter, then its third party character is essentially stigmergic. In its most generic formulation, stigmergy is the phenomenon of indirect communication mediated by modifications of the environment. Extending this notion one might conceive of social stigmergy as the extra-cranial analog of an artificial neural network providing epistemic structure. This paper recommends a stigmergic framework for social epistemology to account for the supposed tension between individual action, wants and beliefs and the social corpora. We also propose that the so-called "extended mind" thesis offers the requisite stigmergic cognitive analog to stigmergic knowledge. Stigmergy as a theory of interaction within complex systems theory is illustrated through an example that runs on a particle swarm optimization algorithm

    Emergence of population structure in socio-cognitively inspired ant colony optimization

    Get PDF
    A metaheuristic proposed by us recently, Ant Colony  Optimization (ACO) hybridized with socio-cognitive inspirations, turned out to generate interesting results compared to classic ACO. Even though it does not always find better solutions to the considered problems, it usually finds sub-optimal solutions  usually. Moreover, instead of a trial-and-error approach to configure the parameters of the ant species in the population, in our approach, the actual structure of the population emerges from predefined species-to-species ant migration strategies. Experimental results of our approach are compared against classic ACO and selected socio-cognitive versions of this algorithm

    Stigmergic epistemology, stigmergic cognition

    Get PDF
    To know is to cognize, to cognize is to be a culturally bounded, rationality-bounded and environmentally located agent. Knowledge and cognition are thus dual aspects of human sociality. If social epistemology has the formation, acquisition, mediation, transmission and dissemination of knowledge in complex communities of knowers as its subject matter, then its third party character is essentially stigmergic. In its most generic formulation, stigmergy is the phenomenon of indirect communication mediated by modifications of the environment. Extending this notion one might conceive of social stigmergy as the extra-cranial analog of an artificial neural network providing epistemic structure. This paper recommends a stigmergic framework for social epistemology to account for the supposed tension between individual action, wants and beliefs and the social corpora. We also propose that the so-called ‘‘extended mind’’ thesis offers the requisite stigmergic cognitive analog to stigmergic knowledge. Stigmergy as a theory of interaction within complex systems theory is illustrated through an example that runs on a particle swarm optimization algorithm.Social epistemology; Extended mind; Social cognition; Particle swarm optimization

    Agent-Based Simulation and Analysis of Human Behavior towards Evacuation Time Reduction

    Get PDF
    Human factors play a significant part in the time taken to evacuate following an emergency. An agent-based simulation, using the Prometheus methodology (SEEP 1.5), has been developed to study the complex behavior of human (the ‘agents’) in high-rise buildings evacuations. In the case of hostel evacuations, simulation results show that pre-evacuation phase takes 60.4% of Total Evacuation Time (TET). The movement phase (including queuing time) only takes 39.6% of TET. From sensitivity analysis, it can be shown that a reduction in TET by 41.2% can be achieved by improving the recognition phase. Exit signs have been used as smart agents. Expanded Ant Colony Optimization (ACO) was used to determine the feasible evacuation routes. Both the ‘familiarity of environment’ wayfinding method, which is the most natural method, and the ACO wayfinding, have been simulated and comparisons made. In scenario 1, where there were no obstacles, both methods achieved the same TET. However, in scenario 2, where an obstacle was present, the TET for the ACO wayfinding method was 21.6% shorter than that for the ‘familiarity’ wayfinding method

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms
    • …
    corecore