285 research outputs found

    ActiBot: A Botnet to Evade Active Detection

    Get PDF
    In recent years, botnets have emerged as a serious threat on the Internet. Botnets are commonly used for exploits such as distributed denial of service (DDoS) attacks, identity theft, spam, and click fraud. The immense size of botnets, some consisting of hundreds of thousands of compromised computers, increases the speed and severity of attacks. Unlike passive behavior anomaly detection techniques, active botnet detection aims to collect evidence actively, in order to reduce detection time and increase accuracy. In this project, we develop and analyze a botnet that we call ActiBot, which can evade some types of active detection mechanisms. Future research will focus on using ActiBot to strengthen existing detection techniques

    ANALYSIS OF BOTNET CLASSIFICATION AND DETECTION BASED ON C&C CHANNEL

    Get PDF
    Botnet is a serious threat to cyber-security. Botnet is a robot that can enter the computer and perform DDoS attacks through attacker’s command. Botnets are designed to extract confidential information from network channels such as LAN, Peer or Internet. They perform on hacker's intention through Command & Control(C&C) where attacker can control the whole network and can clinch illegal activities such as identity theft, unauthorized logins and money transactions. Thus, for security reason, it is very important to understand botnet behavior and go through its countermeasures. This thesis draws together the main ideas of network anomaly, botnet behavior, taxonomy of botnet, famous botnet attacks and detections processes. Based on network protocols, botnets are mainly 3 types: IRC, HTTP, and P2P botnet. All 3 botnet's behavior, vulnerability, and detection processes with examples are explained individually in upcoming chapters. Meanwhile saying shortly, IRC Botnet refers to early botnets targeting chat and messaging applications, HTTP Botnet targets internet browsing/domains and P2P Botnet targets peer network i.e. decentralized servers. Each Botnet's design, target, infecting and spreading mechanism can be different from each other. For an instance, IRC Botnet is targeted for small environment attacks where HTTP and P2P are for huge network traffic. Furthermore, detection techniques and algorithms filtration processes are also different among each of them. Based on these individual botnet's behavior, many research papers have analyzed numerous botnet detection techniques such as graph-based structure, clustering algorithm and so on. Thus, this thesis also analyzes popular detection mechanisms, C&C channels, Botnet working patterns, recorded datasets, results and false positive rates of bots prominently found in IRC, HTTP and P2P. Research area covers C&C channels, botnet behavior, domain browsing, IRC, algorithms, intrusion and detection, network and peer, security and test results. Research articles are conducted from scientific books through online source and University of Turku library

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Threats from Botnets

    Get PDF
    At present, various cyberattacks based on Botnet are the most serious security threats to the Internet. As Botnet continue to evolve and behavioral research on Botnet is inadequate, the question of how to apply some behavioral problems to Botnet research and combine the psychology of the operator to analyze the future trend of Botnet is still a continuous and challenging issue. Botnet is a common computing platform that can be controlled remotely by attackers by invading several noncooperative user terminals in the network space. It is an attacking platform consisting of multiple Bots controlled by a hacker. The classification of Botnet and the working mechanism of Botnet are introduced in this chapter. The threats and the threat evaluation of Botnet are summarized

    Performance evaluation of botnet detection using machine learning techniques

    Get PDF
    Cybersecurity is seriously threatened by Botnets, which are controlled networks of compromised computers. The evolving techniques used by botnet operators make it difficult for traditional methods of botnet identification to stay up. Machine learning has become increasingly effective in recent years as a means of identifying and reducing these hazards. The CTU-13 dataset, a frequently used dataset in the field of cybersecurity, is used in this study to offer a machine learning-based method for botnet detection. The suggested methodology makes use of the CTU-13, which is made up of actual network traffic data that was recorded in a network environment that had been attacked by a botnet. The dataset is used to train a variety of machine learning algorithms to categorize network traffic as botnet-related/benign, including decision tree, regression model, naïve Bayes, and neural network model. We employ a number of criteria, such as accuracy, precision, and sensitivity, to measure how well each model performs in categorizing both known and unidentified botnet traffic patterns. Results from experiments show how well the machine learning based approach detects botnet with accuracy. It is potential for use in actual world is demonstrated by the suggested system’s high detection rates and low false positive rates
    • …
    corecore