1,758 research outputs found

    Opportunities for Dutch Biorefineries

    Get PDF
    Deze Roadmap Bioraffinage beschrijft een aantal mogelijke routes naar de ontwikkeling en implementatie van een bioraffinage-gerelateerde Bio-based Economy in Nederland. De Roadmap combineert korte- en middellange termijn mogelijkheden (commerciële implementatie, demonstratie plants, pilot plants en gerelateerd toegepast onderzoek) met strategisch onderzoek voor de langere termijn. Tevens zijn vier z.g. Moonshots uitgewerkt, als voorziene bioraffinagestrategieën met een grote potentie voor de Nederlandse economi

    Design of biomass value chains that are synergistic with the food-energy-water nexus: strategies and opportunities

    Get PDF
    Humanity’s future sustainable supply of energy, fuels and materials is aiming towards renewable sources such as biomass. Several studies on biomass value chains (BVCs) have demonstrated the feasibility of biomass in replacing fossil fuels. However, many of the activities along the chain can disrupt the food–energy–water (FEW) nexus given that these resource systems have been ever more interlinked due to increased global population and urbanisation. Essentially, the design of BVCs has to integrate the systems-thinking approach of the FEW nexus; such that, existing concerns on food, water and energy security, as well as the interactions of the BVCs with the nexus, can be incorporated in future policies. To date, there has been little to no literature that captures the synergistic opportunities between BVCs and the FEW nexus. This paper presents the first survey of process systems engineering approaches for the design of BVCs, focusing on whether and how these approaches considered synergies with the FEW nexus. Among the surveyed mathematical models, the approaches include multi-stage supply chain, temporal and spatial integration, multi-objective optimisation and uncertainty-based risk management. Although the majority of current studies are more focused on the economic impacts of BVCs, the mathematical tools can be remarkably useful in addressing critical sustainability issues in BVCs. Thus, future research directions must capture the details of food–energy–water interactions with the BVCs, together with the development of more insightful multi-scale, multi-stage, multi-objective and uncertainty-based approaches

    Optimization of Supply Chain Management and Facility Location Selection for a Biorefinery

    Get PDF
    If renewable energy and biofuels are to attain success in the market place, each step of their production and the system as a whole must be optimized to increase material and energy efficiency, reduce production cost and create a competitive alternative to fossil fuels. Systems optimization techniques may be applied to product selection, process design and integration, feedstock procurement and supply chain management to improve performance. This work addresses two problems facing a biorefinery: technology selection and feedstock scheduling in the face of varying feedstock supply and cost. Also addressed is the optimization of a biorefinery supply chain with respect to distributed processing of biomass to bio-products via preprocessing hubs versus centralized processing and facility location selection. Two formulations are proposed that present a systematic approach to address each problem. Case studies are included to demonstrate model capabilities for both formulations. The scheduling model results display model sensitivity to feedstock price and transport distance penalized through carbon dioxide emissions. The distributed model shows that hubs may be used to extend the operating radius of a biorefinery and thereby increase profits

    Modeling of Biorefinery Supply Chain Economic Performance with Discrete Event Simulation

    Get PDF
    As competition for fossil fuels accelerates, alternative sources of chemicals, fuels, and energy production become more appealing to researchers and the layman. Among the candidates to fill this growing niche is lignocellulosic biomass. Many researchers have examined supply chain design and optimization for biofuel and bioenergy production throughout the years. However, these models often fail to capture the variability and uncertainty inherent to the biomass supply chain. Multiple factors with high degrees of stochasticity can have major impacts on the performance of a biorefinery: weather, biomass quality, feedstock availability, and market demand for products are just a few. To begin to address this issue, a discrete event simulation model has been developed to examine the economic performance of a region specific, multifeedstock biorefinery supply chain. Probability distributions developed for product demand and feedstock supply begin to address the random nature of the supply chain. Model development is discussed in the context of a multidisciplinary framework for biorefinery supply chain design. A case study, sensitivity analysis, and scenario analysis, are utilized to examine the capabilities of the model

    Conceptual design of alternative energy systems from biomass

    Get PDF
    El sector energético se está dirigiendo hacia un nuevo paradigma, favoreciendo la aparición de procesos de conversión más eficientes, el uso de las fuentes de energía renovables y la micro-generación. La bioenergía es una solución prometedora para la futura combinación de energías. Los conceptos de ingeniería deben de integrarse junto con los aspectos económicos, ambientales y sociales en el desarrollo de proyectos. Los sistemas de energía centralizados y distribuidos necesitan enfoques a medida para explotar las características de cada posible sistema. Esta tesis investiga el potencial del sector bioenergético, mediante el estudio de la gasificación de biomasa a través de técnicas avanzadas de modelización de procesos y de la incorporación de la gestión de la cadena de suministro, en el marco del diseño conceptual para la toma de decisiones. Los sistemas estudiados son: (i) gasificación integrada con ciclo combinado y con métodos de captura y almacenamiento de CO2 (IGCC-CCS, 285 MWe) para los sistemas de energía centralizados, y (ii) un gasificador de biomasa combinada con un motor de gas (BG-GE, 14 kWe) para los sistemas de energía distribuidos. La superestructura concebida puede ser utilizada en el diseño preliminar de alternativas para los diferentes procesos considerados, para adaptar los ya existentes y para adquirir conocimiento sobre las condiciones de operación de plantas de gasificación. El problema de optimización multi-objetivo considerado evalúa el equilibrio entre los criterios técnico-económicos y ambientales de 25 escenarios, con mezclas de diferentes materias primas y cambios topológicos: mezclas de carbón, coque y biomasa y la generación de electricidad a partir de gas de síntesis, la generación de electricidad a partir de H2 y la producción de H2 puro, considerando o no el uso del gas de purga del PSA en el ciclo combinado. El análisis de Pareto revela que como mejores escenarios el que utiliza coque de petróleo como materia prima para producir H2, con reciclo del gas de purga del PSA y el que utiliza biomasa residual sin reaprovechamiento del gas de purga del PSA. La implementación de la tecnología CCS conlleva una penalización en la eficiencia de un 8,7% en términos de potencia neta, si el H2 se utiliza en el ciclo combinado. La gestión de cadenas de suministro de sistemas centralizados, señalan que España tiene potencial de biomasa residual, invirtiendo en nuevas centrales IGCC-CCS, o para producir electricidad mediante co-combustión en las centrales térmicas de carbón ya existentes. Para el primer caso, el valor actual neto óptimo es 230 millones de € para un periodo considerado de 25 años. Para el segundo caso, se ha calculado que las políticas de subvención en este tipo de proyectos deben de tener en cuenta la sostenibilidad económica, cubriendo en un rango de 5,84% a 20,25% el aumento de los precios de la electricidad. El caso de estudio propuesto y optimizado como ejemplo de un sistema distribuido tiene en cuenta una comunidad de Ghana en el marco de la electrificación rural, a abastecer con peladuras de yuca y mediante sistemas BG-GE. Los resultados revelan una red inviable. De las cadenas de suministro resultantes como óptimas, se puede deducir que cierto nivel de centralización es necesario para que las propuestas sean sostenibles en el tiempo. El sector de la bioenergía cumple ofrece ventajas en términos de impacto ambiental y social. Su implementación es posible con el apoyo de las tecnologías actuales de conversión de energía. Los principales retos están en la mejora de los procesos de pretratamiento de la biomasa y en su almacenamiento. La conversión de la biomasa, junto con los métodos de captura y almacenamiento de CO2, necesitan de incentivos políticos para poder penetrar definitivamente en el mercado, como sería el caso de cualquier otra tecnología alternativa de conversión de energíaThe energy sector faces a new energy paradigm, with more efficient conversion processes, renewable sources and micro-generation. Bioenergy is a promising solution. Engineering aspects must be integrated with economic, environmental and social aspects in bioenergy projects. Biomass properties enhancement is crucial. It concerns energy and matter densifications, for stabilisation and easier transport. Tailor-made approaches are needed to account for the characteristics of each potential system, being it centralised or distributed. This thesis has assessed the bioenergy potential using advanced modelling techniques, enlarged with supply chain management strategies, in the framework of conceptual design for decision-making. The studied energy systems are (i) an integrated gasification combined cycle power plant combined with carbon capture and storage (IGCC-CCS, 285 MWe) for centralised energy systems, and (ii) a biomass gasifier with a gas engine (BG-GE, 14 kWe) for distributed energy systems. Process system modelling and optimisation approaches are integrated with supply chain management to analyse co-gasification and co-production of electricity and hydrogen alternatives in IGCC-CCS, and co-combustion of biomass and coal in pulverised coal power plants in the light of economic and environmental considerations. Process modelling is integrated with supply chain management optimisation for rural electrification by BG-GE systems, considering economic, environmental and social issues. The superstructure can be used for the design of process alternatives, retrofit of existing ones and to gain knowledge on operation of IGCC-CCS. The multi-objective optimisation problem evaluates the trade-off between techno-economic and environmental criteria of 25 scenarios. Considerations comprise different coal, petcoke and biomass combinations and electricity generation from syngas, electricity generation from H2 and purified H2 production without and with PSA purge gas use in the combined cycle. The Pareto frontier analyses reveals that the scenario with petcoke as feedstock for H2 production with PSA flue gas profit is the best in terms of techno-economic optimisation. The scenario with residual biomass without PSA flue gas profit is the best in terms of environmental optimisation. CCS technology implementation leads to an efficiency penalty of 8.7% in net power terms if H2 is used in the IGCC. To maintain the same power level than that obtained with the combustion of syngas, the feedstock should be increased by 21% on a mass basis. Supply chain studies highlight, for Spain, a huge biomass waste potential for electricity and H2 production by investing on new IGCC-CCS power plants, or adaptation of existing plants. For the first case, the optimal NPV is around 230M€ for a period of 25 years. The sensitivity of the optimal solutions to changes in prices is demonstrated. For the second case, policy subsidies or alternatively price increases range from 5.84% to 20.25%. The investment is within 549M€ and 1640M€. A supply chain in a specific community from Ghana is proposed for rural electrification using cassava peels. Optimisations considers 9 communities and an overall electricity demand of 118 MWh/yr. The results reveal an unviable network. From the resulting networks, distributed approaches need a certain level of centralisation to be feasible on time. Bioenergy offers decisive advantages in terms of environmental and social impacts. Its deployment is straightforward to support with current energy conversion technologies. Challenges concern the biomass pre-treatment and storage. Despite all the striking advantages, political incentives are needed for definitive market entry, as would be the case for any energy conversion alternative.Postprint (published version

    Integrated Techno-Economic and Life Cycle Analyses of Biomass Utilization for Value-Added Bioproducts in the Northeastern United States

    Get PDF
    A multi-stage spatial analysis was first conducted to select locations for lignocellulosic biomass-based bioproduct facility, using Geographical Information System (GIS) spatial analysis, multi-criteria analysis ranking algorithm, and social-economic assessment. A case study was developed to determine locations for lignocellulosic biorefineries using feedstocks including forest residue biomass and three energy crops for 13 states in the northeastern United States. In the entire study area, 11.1% of the counties are high-suitable, 48.8% are medium-suitable for biorefinery siting locations. A non-parametric analysis of cross-group surveys showed that preferences on biorefinery siting are homogeneous for experts in academia and industry groups, but people in government agencies presented different opinions. With the Maximum Likelihood test, parameters of distributions and mean values were estimated for nine weighted criteria. Social asset evaluation focusing on degree of rurality and social capital index further sorted counties with higher community acceptance and economic viability. A total of 15 counties were selected with the highest potential for biorefinery sites in the region. A mixed-integer linear programming model was then developed to optimize the multiple biomass feedstock supply chains, including feedstock establishment, harvest, storage, transportation, and preprocessing. The model was applied for analyses of multiple biomass feedstocks at county level for 13 states in the northeastern United States. In the base case with a demand of 180,000 dry Mg/year of biomass, the delivered costs ranged from 67.90to67.90 to 86.97 per dry Mg with an average of 79.58/dryMg.Thebiomassdeliveredcostsbycountywerefrom79.58 /dry Mg. The biomass delivered costs by county were from 67.90 to 150.81 per dry Mg across the northeastern U.S. Considered the entire study area, the delivered cost averaged 85.30/dryMgforforestresidues,85.30 /dry Mg for forest residues, 84.47 /dry Mg for hybrid willow, 99.68forswitchgrassand99.68 for switchgrass and 97.87 per dry Mg for Miscanthus. Seventy seven out of 387 counties could be able to deliver biomass at 84perdryMgorlessatargetsetbyUSDOEby2022.Asensitivityanalysiswasalsoconductedtoevaluatetheeffectsoffeedstockavailability,feedstockprice,moisturecontent,procurementradius,andfacilitydemandonthedeliveredcost.Ourresultsshowedthatprocurementradius,facilitycapacity,andforestresidueavailabilityarethemostsensitivefactorsaffectingthebiomassdeliveredcosts.Anintegratedlifecycleandtechnoeconomicassessmentwascarriedoutforthreebioenergyproductsderivedfrommultiplelignocellulosicbiomass.Threecaseswerestudiedforproductionofpellets,biomassbasedelectricity,andpyrolysisbiooil.TheLCAwasconductedforestimatingenvironmentalimpactsoncradletogatebasiswithfunctionalunitof1000MJforbioenergyproduction.PelletproductionhadthelowestGHGemissions,waterandfossilfuelsconsumption,for8.29kgCO2eq,0.46kg,and105.42MJ,respectively.Conversionprocesspresentedagreaterenvironmentalimpactforallthreebioenergyproducts.Withproducing46,926tonsofpellets,260,000MWhofelectricity,and78,000barrelsofpyrolysisoil,thenetpresentvalues(NPV)forallthreecasesindicatedonlypelletandbiopowerproductioncaseswereprofitablewithNPVs84 per dry Mg or less a target set by US DOE by 2022. A sensitivity analysis was also conducted to evaluate the effects of feedstock availability, feedstock price, moisture content, procurement radius, and facility demand on the delivered cost. Our results showed that procurement radius, facility capacity, and forest residue availability are the most sensitive factors affecting the biomass delivered costs. An integrated life cycle and techno-economic assessment was carried out for three bioenergy products derived from multiple lignocellulosic biomass. Three cases were studied for production of pellets, biomass-based electricity, and pyrolysis bio-oil. The LCA was conducted for estimating environmental impacts on cradle-to-gate basis with functional unit of 1000 MJ for bioenergy production. Pellet production had the lowest GHG emissions, water and fossil fuels consumption, for 8.29 kg CO2 eq, 0.46 kg, and 105.42 MJ, respectively. Conversion process presented a greater environmental impact for all three bioenergy products. With producing 46,926 tons of pellets, 260,000 MWh of electricity, and 78,000 barrels of pyrolysis oil, the net present values (NPV) for all three cases indicated only pellet and biopower production cases were profitable with NPVs 1.20 million for pellet, and 81.60millionforbiopower.Thepelletplantandbiopowerplantwereprofitableonlywhendiscountratesarelessthanorequalto10Astudyevaluatedtheenvironmentalandeconomicimpactsofactivatedcarbon(AC)producedfromlignocellulosicbiomasswasevaluatedforenergystoragepurpose.Resultsindicatethatoverallinplantproductionprocesspresentedthehighestenvironmentalimpacts.NormalizedresultsoflifecycleimpactassessmentshowedthattheACproductionhadenvironmentalimpactsmainlyoncarcinogenics,ecotoxicity,andnoncarcinogenicscategories.Wethenfurtherfocusedonlifecycleanalysisfromrawbiomassdeliverytoplantgate,theresultsshowedfeedstockestablishmenthasthemostsignificantenvironmentalimpact,rangingfrom50.381.60 million for biopower. The pellet plant and biopower plant were profitable only when discount rates are less than or equal to 10%, while it will not be profitable for a pyrolysis oil plant. The uncertainty analysis indicated that pellet production showed the highest uncertainty in GHG emission, bio-oil production had the least uncertainty in GHG emission but had risks producing greater-than-normal amount of GHG. For biopower production, it had the highest probability to be a profitable investment with 95.38%. A study evaluated the environmental and economic impacts of activated carbon (AC) produced from lignocellulosic biomass was evaluated for energy storage purpose. Results indicate that overall “in-plant production” process presented the highest environmental impacts. Normalized results of life cycle impact assessment showed that the AC production had environmental impacts mainly on carcinogenics, ecotoxicity, and non-carcinogenics categories. We then further focused on life cycle analysis from raw biomass delivery to plant gate, the results showed “feedstock establishment” has the most significant environmental impact, ranging from 50.3% to 85.2%. For an activated carbon plant of producing 3000 kg AC per day in the base case, the capital cost would be 6.66 million, and annual operation cost was 15.46million.TheACrequiredsellingprice(RSP)was15.46 million. The AC required selling price (RSP) was 16.79 per kg, with the discounted payback period (DPB) of 9.98 years. Alternative cases of KOH-reuse and steam processes had GHG emission of 15.4 kg CO2 eq, and 10.2 kg CO2 eq for every 1 kg activated carbon, respectively. Monte Carlo simulation showed 49.96% of the probability for an investment to be profitable in activated carbon production for supercapacitor electrodes

    Integrated decarbonisation strategies for the electricity, heat, and transport sectors

    Get PDF
    The rapid climate change experienced at the beginning of the twenty-first century is intimately entwined with the increase in anthropogenic greenhouse gas (GHG) emissions resulting from the growth of fossil fuel consumption in all energy sectors. By 2050, not only these energy sectors must eliminate GHG emissions: electricity, heat, transport, but also those sectors should be closely coupled to achieve maximum synergy effects and efficiency. In this context, this thesis develops integrated models to assess decarbonisation strategies for a variety of complex energy system transitions, including the electricity, heat and transport sectors. Firstly, the thesis proposes a novel single-year, integrated electricity, heat and transport sectors model that considers integrating the hydrogen supply chain while optimising the system’s investment and operation costs and covers both local and national levels. A series of studies are then carried out to evaluate different integrated decarbonisation strategies for the future low-carbon energy system based on the single-year integrated multi-energy optimisation model. Secondly, this thesis evaluates the economic performance and system implications of different road-transport decarbonisation strategies and analyses the electricity sector decarbonisation synergy. Great Britain (GB) case study suggests that transport electrification should be carried out with smart charging to reduce the additional cost on the electricity sector expansion. Hydrogen fuel cell vehicle (HFCV) can be combined with electric vehicle (EV) to reduce the system of increased peak demand due to road transport’s electrification. However, when EV enables smart charging, the case for HFCV becomes less compelling from a system perspective. Their penetration is limited by their higher capital costs and lower efficiency compared to EV. The results also clearly demonstrate a synergy between the hydrogen used in the electricity and transport sector. The integration of hydrogen-fuelled generation can reduce the overall system cost by enabling more investment in renewable energy and reduce the need for the firm but high-cost low-carbon generation technologies, particularly nuclear and gas with carbon capture and storage (CCS). The integration of power-to-gas (P2G) facilities can increase the integration of wind power capacity. Additionally, the heat sector’s decarbonisation is one of the key challenges in achieving the net-zero target by 2050. This thesis evaluates the integrated decarbonisation strategies for the electricity, heat and transport sectors involving hydrogen integration. A study compares the economic advantages under the deployments of P2G hydrogen production and gas-to-gas (G2G) hydrogen production and the associated implications for overall system planning and operation. The results demonstrate that hydrogen integration through the G2G process brings more economic benefits than the P2G process; combining P2G with G2G can yield further cost savings. The results also clearly show the changes in the electricity side driven by the different hydrogen integration strategies. The integration of hydrogen will promote hydrogen boiler (HB) deployment, which will dominate the heating market, combined with the heat pump (HP). From the perspective of the transport sector, the development of HFCV is positively related to the integration cost of the hydrogen system, especially in the demanding carbon scenario. Going further, the single-year, multi-energy integrated optimisation model has limitations, focusing only on short-term investment operations and unable to deal with the long-term system planning problem. Therefore, this thesis presents a novel transition model for the electricity, heat and transport sectors, operating in full hourly resolution and taking into account sectoral coupling, simulating future energy systems’ transition to low-carbon energy production. Finally, considering the different difficulties and speeds of transition in the different energy sectors and the complementary effects between energy sectors, designing individual sector transition cannot provide a systematic view, as the most valuable sector coupling effects are overlooked, and sector separation consideration underestimates the complexity of the optimal transition pathway. This thesis designs three integrated energy system transition pathways based on the multi-year transition model, placing sector coupling and considering a full range of low-carbon technologies, enabling fundamental insights into the optimal energy system transition pathway to achieve the net-zero target by 2050. The GB case study results demonstrate that electrification combined with hydrogen integration will be the most cost-effective pathway. Hybrid heating technologies and EV will be the leading options in the heat and transport sector for decarbonisation. Bioenergy will play an essential role to offset carbon emissions from the other energy sectors. Cross-energy flexibility is vital to achieving a cost-effective transition pathway. Based on the above results, the policy recommendations for the net-zero target achieving can be made for policymakers.Open Acces
    corecore