2,663 research outputs found

    The impact of interference on the performance of a multi-path metropolitan wireless mesh network

    Get PDF
    Wireless mesh networks (WMNs) have attracted much attention lately for providing efficiently wireless services with high quality of service (QoS). Metropolitan WMNs are a low-cost solution for providing broadband wireless internet access in large areas. One of the fundamental issues of wireless communications is interference. In WMNs interference can be caused by simultaneous transmissions at links internal to the mesh network or by external sources. In this work we perform extensive measurements in a multi-radio metropolitan WMN deployed in the city of Heraklion, Greece. The basic goal is to investigate the impact of interference on the performance of the multi-path WMN. Towards that goal, we perform measurements with FTP, video streaming and raw data traffic for two scenarios, one with an efficient channel assignment (CA) that accounts for interference and another with a random CA that results in high internal and external interference in the network. The results prove that interference creates severe performance degradation, with regards to high delay, high packet losses, low throughput and low signal-to-interference and noise ratio (SINR). As a result, the metropolitan WMN becomes unable to support multi-path flows and demanding applications with an acceptable QoS. © 2011 IEEE

    Enabling Parallel Wireless Communication in Mobile Robot Teams

    Get PDF
    Wireless inter-robot communication enables robot teams to cooperatively solve complex problems that cannot be addressed by a single robot. Applications for cooperative robot teams include search and rescue, exploration and surveillance. Communication is one of the most important components in future autonomous robot systems and is essential for core functions such as inter-robot coordination, neighbour discovery and cooperative control algorithms. In environments where communication infrastructure does not exist, decentralised multi-hop networks can be constructed using only the radios on-board each robot. These are known as wireless mesh networks (WMNs). However existing WMNs have limited capacity to support even small robot teams. There is a need for WMNs where links act like dedicated point-to-point connections such as in wired networks. Addressing this problem requires a fundamentally new approach to WMN construction and this thesis is the first comprehensive study in the multi-robot literature to address these challenges. In this thesis, we propose a new class of communication systems called zero mutual interference (ZMI) networks that are able to emulate the point-to-point properties of a wired network over a WMN implementation. We instantiate the ZMI network using a multi-radio multi-channel architecture that autonomously adapts its topology and channel allocations such that all network edges communicate at the full capacity of the radio hardware. We implement the ZMI network on a 100-radio testbed with up to 20-individual nodes and verify its theoretical properties. Mobile robot experiments also demonstrate these properties are practically achievable. The results are an encouraging indication that the ZMI network approach can facilitate the communication demands of large cooperative robot teams deployed in practical problems such as data pipe-lining, decentralised optimisation, decentralised data fusion and sensor networks
    • …
    corecore