102 research outputs found

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks

    Deep fingerprint classification network

    Get PDF
    Fingerprint is one of the most well-known biometrics that has been used for personal recognition. However, faked fingerprints have become the major enemy where they threat the security of this biometric. This paper proposes an efficient deep fingerprint classification network (DFCN) model to achieve accurate performances of classifying between real and fake fingerprints. This model has extensively evaluated or examined parameters. Total of 512 images from the ATVS-FFp_DB dataset are employed. The proposed DFCN achieved high classification performance of 99.22%, where fingerprint images are successfully classified into their two categories. Moreover, comparisons with state-of-art approaches are provided

    Iris Liveness Detection Competition (LivDet-Iris) -- The 2020 Edition

    Full text link
    Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)(https://www.idiap.ch/software/beat/) open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10\% and a BPCER of 0.46\% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.Comment: 9 pages, 3 figures, 3 tables, Accepted for presentation at International Joint Conference on Biometrics (IJCB 2020

    Face liveness detection by rPPG features and contextual patch-based CNN

    Get PDF
    Abstract. Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information. We propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, we design multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities for the representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion of the two types of features, which allow the proposed system to be generalized for detecting not only print attack and replay attack, but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods.Tiivistelmä. Kasvojen anti-spoofingilla on keskeinen rooli turvajärjestelmissä, mukaan lukien kasvojen maksujärjestelmät ja kasvojentunnistusjärjestelmät. Aiemmat tutkimukset osoittivat, että elävillä kasvoilla ja esityshyökkäyksillä on merkittäviä eroja sekä etävalopölymografiassa (rPPG) että tekstuuri-informaatiossa, ehdotamme yleistettyä menetelmää, jossa hyödynnetään sekä rPPG: tä että tekstuuriominaisuuksia kasvojen anti-spoofing -tehtävässä. Ensinnäkin rPPG-informaation esittämiseksi on suunniteltu monivaiheisia pitkän aikavälin tilastollisia spektrisiä (MS-LTSS) ominaisuuksia, joissa on muunneltavissa olevat granulariteetit. Toiseksi, kontekstuaalista patch-pohjaista konvoluutioverkkoa (CP-CNN) käytetään globaalin paikallisen ja monitasoisen syvään tekstuuriominaisuuksiin samanaikaisesti. Lopuksi, painoarvostusstrategiaa käytetään päätöksentekotason fuusioon, joka auttaa yleistämään menetelmää paitsi hyökkäys- ja toistoiskuille, mutta myös peittää hyökkäyksen. Kattavat kokeet suoritettiin viidellä tietokannalla, nimittäin 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD ja OULU-NPU, ehdotetun menetelmän parempien tulosten osoittamiseksi verrattuna uusimpiin menetelmiin

    Deep Learning based Fingerprint Presentation Attack Detection: A Comprehensive Survey

    Full text link
    The vulnerabilities of fingerprint authentication systems have raised security concerns when adapting them to highly secure access-control applications. Therefore, Fingerprint Presentation Attack Detection (FPAD) methods are essential for ensuring reliable fingerprint authentication. Owing to the lack of generation capacity of traditional handcrafted based approaches, deep learning-based FPAD has become mainstream and has achieved remarkable performance in the past decade. Existing reviews have focused more on hand-cratfed rather than deep learning-based methods, which are outdated. To stimulate future research, we will concentrate only on recent deep-learning-based FPAD methods. In this paper, we first briefly introduce the most common Presentation Attack Instruments (PAIs) and publicly available fingerprint Presentation Attack (PA) datasets. We then describe the existing deep-learning FPAD by categorizing them into contact, contactless, and smartphone-based approaches. Finally, we conclude the paper by discussing the open challenges at the current stage and emphasizing the potential future perspective.Comment: 29 pages, submitted to ACM computing survey journa

    Feature Fusion for Fingerprint Liveness Detection

    Get PDF
    For decades, fingerprints have been the most widely used biometric trait in identity recognition systems, thanks to their natural uniqueness, even in rare cases such as identical twins. Recently, we witnessed a growth in the use of fingerprint-based recognition systems in a large variety of devices and applications. This, as a consequence, increased the benefits for offenders capable of attacking these systems. One of the main issues with the current fingerprint authentication systems is that, even though they are quite accurate in terms of identity verification, they can be easily spoofed by presenting to the input sensor an artificial replica of the fingertip skin’s ridge-valley patterns. Due to the criticality of this threat, it is crucial to develop countermeasure methods capable of facing and preventing these kind of attacks. The most effective counter–spoofing methods are those trying to distinguish between a "live" and a "fake" fingerprint before it is actually submitted to the recognition system. According to the technology used, these methods are mainly divided into hardware and software-based systems. Hardware-based methods rely on extra sensors to gain more pieces of information regarding the vitality of the fingerprint owner. On the contrary, software-based methods merely rely on analyzing the fingerprint images acquired by the scanner. Software-based methods can then be further divided into dynamic, aimed at analyzing sequences of images to capture those vital signs typical of a real fingerprint, and static, which process a single fingerprint impression. Among these different approaches, static software-based methods come with three main benefits. First, they are cheaper, since they do not require the deployment of any additional sensor to perform liveness detection. Second, they are faster since the information they require is extracted from the same input image acquired for the identification task. Third, they are potentially capable of tackling novel forms of attack through an update of the software. The interest in this type of counter–spoofing methods is at the basis of this dissertation, which addresses the fingerprint liveness detection under a peculiar perspective, which stems from the following consideration. Generally speaking, this problem has been tackled in the literature with many different approaches. Most of them are based on first identifying the most suitable image features for the problem in analysis and, then, into developing some classification system based on them. In particular, most of the published methods rely on a single type of feature to perform this task. Each of this individual features can be more or less discriminative and often highlights some peculiar characteristics of the data in analysis, often complementary with that of other feature. Thus, one possible idea to improve the classification accuracy is to find effective ways to combine them, in order to mutually exploit their individual strengths and soften, at the same time, their weakness. However, such a "multi-view" approach has been relatively overlooked in the literature. Based on the latter observation, the first part of this work attempts to investigate proper feature fusion methods capable of improving the generalization and robustness of fingerprint liveness detection systems and enhance their classification strength. Then, in the second part, it approaches the feature fusion method in a different way, that is by first dividing the fingerprint image into smaller parts, then extracting an evidence about the liveness of each of these patches and, finally, combining all these pieces of information in order to take the final classification decision. The different approaches have been thoroughly analyzed and assessed by comparing their results (on a large number of datasets and using the same experimental protocol) with that of other works in the literature. The experimental results discussed in this dissertation show that the proposed approaches are capable of obtaining state–of–the–art results, thus demonstrating their effectiveness
    corecore