2,804 research outputs found

    Multi-party quantum private comparison based on entanglement swapping of Bell entangled states within d-level quantum system

    Full text link
    In this paper, a multi-party quantum private comparison (MQPC) scheme is suggested based on entanglement swapping of Bell entangled states within d-level quantum system, which can accomplish the equality comparison of secret binary sequences from n users via one execution of scheme. Detailed security analysis shows that both the outside attack and the participant attack are ineffective. The suggested scheme needn't establish a private key among n users beforehand through the quantum key distribution (QKD) method to encrypt the secret binary sequences. Compared with previous MQPC scheme based on d-level Cat states and d-level Bell entangled states, the suggested scheme has distinct advantages on quantum resource, quantum measurement of third party (TP) and qubit efficiency.Comment: 8 pages, 1 figure, 1 tabl

    Multi-party quantum private comparison of size relationship with two third parties based on d-dimensional Bell states

    Full text link
    In this paper, we put forward a multi-party quantum private comparison (MQPC) protocol with two semi-honest third parties (TPs) by adopting d-dimensional Bell states, which can judge the size relationship of private integers from more than two users within one execution of protocol. Each TP is permitted to misbehave on her own but cannot collude with others. In the proposed MQPC protocol, TPs are only required to apply d-dimensional single-particle measurements rather than d-dimensional Bell state measurements. There are no quantum entanglement swapping and unitary operations required in the proposed MQPC protocol. The security analysis validates that the proposed MQPC protocol can resist both the outside attacks and the participant attacks. The proposed MQPC protocol is adaptive for the case that users want to compare the size relationship of their private integers under the control of two supervisors. Furthermore, the proposed MQPC protocol can be used in the strange user environment, because there are not any communication and pre-shared key between each pair of users.Comment: 15 pages, 1 figure, 1 tabl

    Entanglement Verification in Quantum Networks with Tampered Nodes

    Full text link
    In this paper, we consider the problem of entanglement verification across the quantum memories of any two nodes of a quantum network. Its solution can be a means for detecting (albeit not preventing) the presence of intruders that have taken full control of a node, either to make a denial-of-service attack or to reprogram the node. Looking for strategies that only require local operations and classical communication (LOCC), we propose two entanglement verification protocols characterized by increasing robustness and efficiency.Comment: 14 pages, 7 figure

    The Crypto-democracy and the Trustworthy

    Full text link
    In the current architecture of the Internet, there is a strong asymmetry in terms of power between the entities that gather and process personal data (e.g., major Internet companies, telecom operators, cloud providers, ...) and the individuals from which this personal data is issued. In particular, individuals have no choice but to blindly trust that these entities will respect their privacy and protect their personal data. In this position paper, we address this issue by proposing an utopian crypto-democracy model based on existing scientific achievements from the field of cryptography. More precisely, our main objective is to show that cryptographic primitives, including in particular secure multiparty computation, offer a practical solution to protect privacy while minimizing the trust assumptions. In the crypto-democracy envisioned, individuals do not have to trust a single physical entity with their personal data but rather their data is distributed among several institutions. Together these institutions form a virtual entity called the Trustworthy that is responsible for the storage of this data but which can also compute on it (provided first that all the institutions agree on this). Finally, we also propose a realistic proof-of-concept of the Trustworthy, in which the roles of institutions are played by universities. This proof-of-concept would have an important impact in demonstrating the possibilities offered by the crypto-democracy paradigm.Comment: DPM 201

    A novel multi-party semiquantum private comparison protocol of size relationship with d-dimensional single-particle states

    Full text link
    By using d-level single-particle states, the first multi-party semiquantum private comparison (MSQPC) protocol which can judge the size relationship of private inputs from more than two classical users within one execution of protocol is put forward. This protocol requires the help of one quantum third party (TP) and one classical TP, both of whom are allowed to misbehave on their own but cannot conspire with anyone else. Neither quantum entanglement swapping nor unitary operations are necessary for implementing this protocol. TPs are only required to perform d-dimensional single-particle measurements. The correctness analysis validates the accuracy of the compared results. The security analysis verifies that both the outside attacks and the participant attacks can be resisted.Comment: 19 pages, 2 figures, 2 table

    Quantum Private Function Evaluation

    Full text link
    Private function evaluation is a task that aims to obtain the output of a function while keeping the function secret. So far its quantum analogue has not yet been articulated. In this study, we initiate the study of quantum private function evaluation, the quantum analogue of classical private function evaluation. We give a formal definition of quantum private function evaluation and present two schemes together with their security proofs. We then give an experimental demonstration of the scheme. Finally we apply quantum private function evaluation to quantum copy protection to illustrate its usage.Comment: 14 pages, 6 figure
    • 

    corecore