11,278 research outputs found

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications

    R3D3 in the Wild: Using A Robot for Turn Management in Multi-Party Interaction with a Virtual Human

    Get PDF
    R3D3 is a combination of a virtual human with a non-speaking robot capable of head gestures and emotive gaze behaviour. We use the robot to implement various turn management functions for use in multi-party interaction with R3D3, and present the results of a field study investigating their effects on interactions with groups of children

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Presenting in Virtual Worlds: Towards an Architecture for a 3D Presenter explaining 2D-Presented Information

    Get PDF
    Entertainment, education and training are changing because of multi-party interaction technology. In the past we have seen the introduction of embodied agents and robots that take the role of a museum guide, a news presenter, a teacher, a receptionist, or someone who is trying to sell you insurances, houses or tickets. In all these cases the embodied agent needs to explain and describe. In this paper we contribute the design of a 3D virtual presenter that uses different output channels to present and explain. Speech and animation (posture, pointing and involuntary movements) are among these channels. The behavior is scripted and synchronized with the display of a 2D presentation with associated text and regions that can be pointed at (sheets, drawings, and paintings). In this paper the emphasis is on the interaction between 3D presenter and the 2D presentation
    corecore