379 research outputs found

    Implementation and Integration of Fuzzy Algorithms for Descending Stair of KMEI Humanoid Robot

    Get PDF
    Locomotion of humanoid robot depends on the mechanical characteristic of the robot. Walking on descending stairs with integrated control systems for the humanoid robot is proposed. The analysis of trajectory for descending stairs is calculated by the constrains of step length stair using fuzzy algorithm. The established humanoid robot on dynamically balance on this matter of zero moment point has been pretended to be consisting of single support phase and double support phase. Walking transition from single support phase to double support phase is needed for a smooth transition cycle. To accomplish the problem, integrated motion and controller are divided into two conditions: motion working on offline planning and controller working online walking gait generation. To solve the defect during locomotion of the humanoid robot, it is directly controlled by the fuzzy logic controller. This paper verified the simulation and the experiment for descending stair of KMEI humanoid robot.&nbsp

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Towards the Design and Evaluation of Robotic Legs of Quadruped Robots

    Get PDF
    Legged systems have potentials of better mobility than traditional wheeled and tracked vehicles on rough terrain. The reason for the superior mobility of legged systems has been studied for a long period and plenty of robots using legs for locomotion have been developed during recent few decades. However the built legged robots still exhibit insufficiency of expected locomotive ability comparing with their counterparts in nature with similar size. The reason may be complicated and systematic associated with several aspects of the development such as the design, key components, control & planning and/or test and evaluation. The goal of this thesis is to close the gap between legged robots research & development and practical application and deployment. The research presented in this thesis focuses on three aspects including morphological parameters of quadruped robots, optimal design for knee joint mechanism and the development of a novel test bench\u2014 Terrain Simulator Platform. The primary motivation and target for legged robots developing is to overcome the challenging terrain. However few legged robots take the feature of terrain into consideration when determining the morphological parameters, such as limb length and knee orientation for robots. In this thesis, the relationship between morphological parameters of quadruped robots and terrain features are studied by taking a ditch/gap as an example. The influence of diverse types of morphological parameters including limb length, limb mass, the center-of-mass position in limbs and knee configuration on the ditch crossing capability are presented. In order to realize extended motion range and desired torque profile, the knee joint of HyQ2max adopts a six-bar linkage mechanism as transmission. Owing to the complexity of closed-loop kinematic chain, the transmission ratio is difficult to design. In this thesis, I used a static equilibrium based approach to derive the transmission relationship and study the singularity conditions. Further desired torque profile of knee joint are realized by a multi-variable geometric parameters optimization. For the test and performance evaluation of robotic leg, I designed and constructed a novel test bench\u2014 Terrain Simulator Platform (TSP). The main function of the TSP is to provide sufficient test conditions for robotic leg by simulating various terrain features. Thus working status of robotic leg can be known before the construction of the whole robot. The core of the TSP is a 3-PRR planar parallel mechanism. In this thesis, the structure design and implementation, the kinematics including singularity, workspace etc, and dynamics of this 3-PRR mechanism are presented

    Software Architecture and Development for Controlling a Hubo Humanoid Robot

    Get PDF
    Due to their human-like structure, humanoid robots are capable of doing some complex tasks. Since a humanoid robot has a large number of actuators and sensors, controlling it is a difficult task. For various tasks like balancing, driving a car, and interacting with humans, real-time response of the robot is essential. Efficiently controlling a humanoid robot requires a software that guarantees real-time interface and control mechanism so that real-time response of the robot is possible. Addition- ally, to reduce the development effort and time, the software should be open-source, multi-lingual and should have high-level constructs inbuilt in it. Currently Robot Operating System (ROS) and Microsoft Robotics Developer Studio (MRDS) are most commonly used software packages for controlling robots. Since ROS uses Transmission Control Protocol (TCP) for inter-process communication, the latency in communication is high. Therefore, if ROS is used, the robot cannot respond in real-time. On the other hand, MRDS is not an open-source but a proprietary soft- ware package. Therefore it cannot be optimized for a particular robot. Thus, there is an urgent need to develop a real-time, open-source, modular, and thin software for controlling humanoid robots. This thesis describes the design and architecture of two software packages developed to fill this gap. It is expected that in the near future a large number of humanoid robots will be used all around the world. The humanoid robots will be used to perform various tasks. The developed software packages have the potential to be the most commonly used software packages for controlling humanoid robots. These packages will assist humans in controlling and monitoring humanoid robots to perform search-and-rescue operations, explore the universe, assist in household chores, etc

    Nonlinear Model Predictive Control for Motion Generation of Humanoids

    Get PDF
    Das Ziel dieser Arbeit ist die Untersuchung und Entwicklung numerischer Methoden zur Bewegungserzeugung von humanoiden Robotern basierend auf nichtlinearer modell-prädiktiver Regelung. Ausgehend von der Modellierung der Humanoiden als komplexe Mehrkörpermodelle, die sowohl durch unilaterale Kontaktbedingungen beschränkt als auch durch die Formulierung unteraktuiert sind, wird die Bewegungserzeugung als Optimalsteuerungsproblem formuliert. In dieser Arbeit werden numerische Erweiterungen basierend auf den Prinzipien der Automatischen Differentiation für rekursive Algorithmen, die eine effiziente Auswertung der dynamischen Größen der oben genannten Mehrkörperformulierung erlauben, hergeleitet, sodass sowohl die nominellen Größen als auch deren ersten Ableitungen effizient ausgewertet werden können. Basierend auf diesen Ideen werden Erweiterungen für die Auswertung der Kontaktdynamik und der Berechnung des Kontaktimpulses vorgeschlagen. Die Echtzeitfähigkeit der Berechnung von Regelantworten hängt stark von der Komplexität der für die Bewegungerzeugung gewählten Mehrkörperformulierung und der zur Verfügung stehenden Rechenleistung ab. Um einen optimalen Trade-Off zu ermöglichen, untersucht diese Arbeit einerseits die mögliche Reduktion der Mehrkörperdynamik und andererseits werden maßgeschneiderte numerische Methoden entwickelt, um die Echtzeitfähigkeit der Regelung zu realisieren. Im Rahmen dieser Arbeit werden hierfür zwei reduzierte Modelle hergeleitet: eine nichtlineare Erweiterung des linearen inversen Pendelmodells sowie eine reduzierte Modellvariante basierend auf der centroidalen Mehrkörperdynamik. Ferner wird ein Regelaufbau zur GanzkörperBewegungserzeugung vorgestellt, deren Hauptbestandteil jeweils aus einem speziell diskretisierten Problem der nichtlinearen modell-prädiktiven Regelung sowie einer maßgeschneiderter Optimierungsmethode besteht. Die Echtzeitfähigkeit des Ansatzes wird durch Experimente mit den Robotern HRP-2 und HeiCub verifiziert. Diese Arbeit schlägt eine Methode der nichtlinear modell-prädiktiven Regelung vor, die trotz der Komplexität der vollen Mehrkörperformulierung eine Berechnung der Regelungsantwort in Echtzeit ermöglicht. Dies wird durch die geschickte Kombination von linearer und nichtlinearer modell-prädiktiver Regelung auf der aktuellen beziehungsweise der letzten Linearisierung des Problems in einer parallelen Regelstrategie realisiert. Experimente mit dem humanoiden Roboter Leo zeigen, dass, im Vergleich zur nominellen Strategie, erst durch den Einsatz dieser Methode eine Bewegungserzeugung auf dem Roboter möglich ist. Neben Methoden der modell-basierten Optimalsteuerung werden auch modell-freie Methoden des verstärkenden Lernens (Reinforcement Learning) für die Bewegungserzeugung untersucht, mit dem Fokus auf den schwierig zu modellierenden Modellunsicherheiten der Roboter. Im Rahmen dieser Arbeit werden eine allgemeine vergleichende Studie sowie Leistungskennzahlen entwickelt, die es erlauben, modell-basierte und -freie Methoden quantitativ bezüglich ihres Lösungsverhaltens zu vergleichen. Die Anwendung der Studie auf ein akademisches Beispiel zeigt Unterschiede und Kompromisse sowie Break-Even-Punkte zwischen den Problemformulierungen. Diese Arbeit schlägt basierend auf dieser Grundlage zwei mögliche Kombinationen vor, deren Eigenschaften bewiesen und in Simulation untersucht werden. Außerdem wird die besser abschneidende Variante auf dem humanoiden Roboter Leo implementiert und mit einem nominellen modell-basierten Regler verglichen

    Designing an algorithm for bioloid humanoid navigating in its indoor environment

    Get PDF
    Gait analyses are the preliminary requirements to establish a navigation system of a humanoid robot. Designing a suitable indoor environment and its mapping are also important for the android localization, selection of a goal to achieve it and to perform the assigned tasks in its surroundings. This paper delineates the various gaits like walking, turning, obstacle overcoming and step up-down stairs for a humanoid system. The writing also explicates the design of the indoor test environment with the stationary obstacles placed on the navigation routes. The development of an efficient algorithm is also excogitated based on the various analyses of gaits and the predefined map of the test environment. As the navigation map is predetermined, the designed algorithm animates the humanoid to navigate by selecting an optimal route, depending on some external commands, to reach at the goal position. Finally the performance of the system is analysed based on the elapsed time of the navigation action with the validation of optimal navigation strategy where the designed algorithm demonstrates the robustness of its implementation and execution

    Motion Planning and Feedback Control of Simulated Robots in Multi-Contact Scenarios

    Get PDF
    Diese Dissertation präsentiert eine optimale steuerungsbasierte Architektur für die Bewegungsplanung und Rückkopplungssteuerung simulierter Roboter in Multikontaktszenarien. Bewegungsplanung und -steuerung sind grundlegende Bausteine für die Erstellung wirklich autonomer Roboter. Während in diesen Bereichen enorme Fortschritte für Manipulatoren mit festem Sockel und Radrobotern in den letzten Jahren erzielt wurden, besteht das Problem der Bewegungsplanung und -steuerung für Roboter mit Armen und Beinen immer noch ein ungelöstes Problem, das die Notwendigkeit effizienterer und robusterer Algorithmen belegt. In diesem Zusammenhang wird in dieser Dissertation eine Architektur vorgeschlagen, mit der zwei Hauptherausforderungen angegangen werden sollen, nämlich die effiziente Planung von Kontaktsequenzen und Ganzkörperbewegungen für Floating-Base-Roboter sowie deren erfolgreiche Ausführung mit Rückkopplungsregelungsstrategien, die Umgebungsunsicherheiten bewältigen könne
    corecore