149 research outputs found

    Multipair Relaying With Space-Constrained Large-Scale MIMO Arrays: Spectral and Energy Efficiency Analysis With Incomplete CSI

    Get PDF
    In this paper, we study a multi-pair two-way large-scale multiple-input multiple-output (MIMO) decode-and-forward relay system. Multiple single-antenna user pairs exchange information via a shared relay working at half-duplex. The proposed scenario considers a practical case where an increasing number of antennas is deployed in a fixed physical space, giving rise to a trade-off between antenna gain and spatial correlation. The channel is assumed imperfectly known, and the relay employs linear processing methods. We study the large-scale approximations of the sum spectral efficiency (SE) and investigate the energy efficiency (EE) with a practical power consumption model when the number of relay antennas becomes large. We demonstrate the impact of the relay antenna number and spatial correlation with reducing inter-antenna distance on the EE performance. We exploit the increasing spatial correlation to allow an incomplete channel state information (CSI) acquisition where explicit CSI is acquired only for a subset of antennas. Our analytical derivations and numerical results show that applying the incomplete CSI strategy in the proposed system can improve the EE against complete CSI systems while maintaining the average SE performance

    Energy Efficient Massive MIMO and Beamforming for 5G Communications

    Get PDF
    Massive multiple-input multiple-output (MIMO) has been a key technique in the next generation of wireless communications for its potential to achieve higher capacity and data rates. However, the exponential growth of data traffic has led to a significant increase in the power consumption and system complexity. Therefore, we propose and study wireless technologies to improve the trade-off between system performance and power consumption of wireless communications. This Thesis firstly proposes a strategy with partial channel state information (CSI) acquisition to reduce the power consumption and hardware complexity of massive MIMO base stations. In this context, the employment of partial CSI is proposed in correlated communication channels with user mobility. By exploiting both the spatial correlation and temporal correlation of the channel, our analytical results demonstrate significant gains in the energy efficiency of the massive MIMO base station. Moreover, relay-aided communications have experienced raising interest; especially, two-way relaying systems can improve spectral efficiency with short required operating time. Therefore, this Thesis focuses on an uncorrelated massive MIMO two-way relaying system and studies power scaling laws to investigate how the transmit powers can be scaled to improve the energy efficiency up to several times the energy efficiency without power scaling while approximately maintaining the system performance. In a similar line, large antenna arrays deployed at the space-constrained relay would give rise to the spatial correlation. For this reason, this Thesis presents an incomplete CSI scheme to evaluate the trade-off between the spatial correlation and system performance. In addition, the advantages of linear processing methods and the effects of channel aging are investigated to further improve the relay-aided system performance. Similarly, large antenna arrays are required in millimeter-wave communications to achieve narrow beams with higher power gain. This poses the problem that locating the best beam direction requires high power and complexity consumption. Therefore, this Thesis presents several low-complexity beam alignment methods with respect to the state-of-the-art to evaluate the trade-off between complexity and system performance. Overall, extensive analytical and numerical results show an improved performance and validate the effectiveness of the proposed techniques

    On the Effects of Channel Aging in D2D Two-Way Relaying with Space-Constrained Massive MIMO

    Get PDF
    This paper studies the spectral efficiency (SE) of a space-constrained multi-pair two-way massive multiple-input multiple-output (MIMO) decode-and-forward (DF) relay system with channel aging for device-to-device (D2D) communications in the Internet of Things (IoT) environments. Maximum ratio combininy-Maximum ratio transmission (MRC/MRT) processing is employed at the relay and imperfect channel estimation is assumed. With the consideration of the spatial correlation due to insufficiently spaced antennas, and the time correlation due to channel aging, we study the closed-form large-scale approximations of the SE performance. Our analytical studies and performance results demonstrate that a degree of both spatial correlation due to antenna proximity, and time correlation due to channel aging can be tolerated in the massive MIMO regime without significant performance degradation

    Rate-Splitting Robustness in Multi-Pair Massive MIMO Relay Systems

    Get PDF
    Relay systems improve both coverage and system capacity. Toward this direction, a full-duplex (FD) technology, being able to boost the spectral efficiency by transmitting and receiving simultaneously on the same frequency and time resources, is envisaged to play a key role in future networks. However, its benefits come at the expense of self-interference (SI) from their own transmit signal. At the same time, massive multiple-input massive multiple-output systems, bringing unconventionally many antennas, emerge as a promising technology with huge degrees-of-freedom. To this end, this paper considers a multi-pair decode-and-forward FD relay channel, where the relay station is deployed with a large number of antennas. Moreover, the rate-splitting (RS) transmission has recently been shown to provide significant performance benefits in various multi-user scenarios with imperfect channel state information at the transmitter (CSIT). Engaging the RS approach, we employ the deterministic equivalent analysis to derive the corresponding sum-rates in the presence of interferences. Initially, numerical results demonstrate the robustness of RS in half-duplex (HD) systems, since the achievable sum-rate increases without bound, i.e., it does not saturate at high signal-to-noise ratio. Next, we tackle the detrimental effect of SI in FD. In particular, and most importantly, not only FD outperforms HD, but also RS enables increasing the range of SI over which FD outperforms HD. Furthermore, increasing the number of relay station antennas, RS appears to be more efficacious due to imperfect CSIT, since SI decreases. Interestingly, increasing the number of users, the efficiency of RS worsens and its implementation becomes less favorable under these conditions. Finally, we verify that the proposed DEs, being accurate for a large number of relay station antennas, are tight approximations even for realistic system dimensions.Peer reviewedFinal Accepted Versio

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Multipair Two-Way DF Relaying with Cell-Free Massive MIMO

    Full text link
    We consider a two-way half-duplex decode-and-forward (DF) relaying system with multiple pairs of single-antenna users assisted by a cell-free (CF) massive multiple-input multiple-output (mMIMO) architecture with multiple-antenna access points (APs). Under the practical constraint of imperfect channel state information (CSI), we derive the achievable sum spectral efficiency (SE) for a finite number of APs with maximum ratio (MR) linear processing for both reception and transmission in closed-form. Notably, the proposed CF mMIMO relaying architecture, exploiting the spatial diversity, and providing better coverage, outperforms the conventional collocated mMIMO deployment. Moreover, we shed light on the power-scaling laws maintaining a specific SE as the number of APs grows. A thorough examination of the interplay between the transmit powers per pilot symbol and user/APs takes place, and useful conclusions are extracted. Finally, differently to the common approach for power control in CF mMIMO systems, we design a power allocation scheme maximizing the sum SE.Comment: 15 pages, 8 figures, This work was accepted in IEEE Trans. Green Commun. Net. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore