681 research outputs found

    ElfStore: A Resilient Data Storage Service for Federated Edge and Fog Resources

    Full text link
    Edge and fog computing have grown popular as IoT deployments become wide-spread. While application composition and scheduling on such resources are being explored, there exists a gap in a distributed data storage service on the edge and fog layer, instead depending solely on the cloud for data persistence. Such a service should reliably store and manage data on fog and edge devices, even in the presence of failures, and offer transparent discovery and access to data for use by edge computing applications. Here, we present Elfstore, a first-of-its-kind edge-local federated store for streams of data blocks. It uses reliable fog devices as a super-peer overlay to monitor the edge resources, offers federated metadata indexing using Bloom filters, locates data within 2-hops, and maintains approximate global statistics about the reliability and storage capacity of edges. Edges host the actual data blocks, and we use a unique differential replication scheme to select edges on which to replicate blocks, to guarantee a minimum reliability and to balance storage utilization. Our experiments on two IoT virtual deployments with 20 and 272 devices show that ElfStore has low overheads, is bound only by the network bandwidth, has scalable performance, and offers tunable resilience.Comment: 24 pages, 14 figures, To appear in IEEE International Conference on Web Services (ICWS), Milan, Italy, 201

    Towards video streaming in IoT environments: vehicular communication perspective

    Get PDF
    Multimedia oriented Internet of Things (IoT) enables pervasive and real-time communication of video, audio and image data among devices in an immediate surroundings. Today's vehicles have the capability of supporting real time multimedia acquisition. Vehicles with high illuminating infrared cameras and customized sensors can communicate with other on-road devices using dedicated short-range communication (DSRC) and 5G enabled communication technologies. Real time incidence of both urban and highway vehicular traffic environment can be captured and transmitted using vehicle-to-vehicle and vehicle-to-infrastructure communication modes. Video streaming in vehicular IoT (VSV-IoT) environments is in growing stage with several challenges that need to be addressed ranging from limited resources in IoT devices, intermittent connection in vehicular networks, heterogeneous devices, dynamism and scalability in video encoding, bandwidth underutilization in video delivery, and attaining application-precise quality of service in video streaming. In this context, this paper presents a comprehensive review on video streaming in IoT environments focusing on vehicular communication perspective. Specifically, significance of video streaming in vehicular IoT environments is highlighted focusing on integration of vehicular communication with 5G enabled IoT technologies, and smart city oriented application areas for VSV-IoT. A taxonomy is presented for the classification of related literature on video streaming in vehicular network environments. Following the taxonomy, critical review of literature is performed focusing on major functional model, strengths and weaknesses. Metrics for video streaming in vehicular IoT environments are derived and comparatively analyzed in terms of their usage and evaluation capabilities. Open research challenges in VSV-IoT are identified as future directions of research in the area. The survey would benefit both IoT and vehicle industry practitioners and researchers, in terms of augmenting understanding of vehicular video streaming and its IoT related trends and issues

    Enabling peer-to-peer remote experimentation in distributed online remote laboratories

    Get PDF
    Remote Access Laboratories (RALs) are online platforms that allow human user interaction with physical instruments over the Internet. Usually RALs follow a client-server paradigm. Dedicated providers create and maintain experiments and corresponding educational content. In contrast, this dissertation focuses on a Peer-to-Peer (P2P) service model for RALs where users are encouraged to host experiments at their location. This approach can be seen as an example of an Internet of Things (IoT) system. A set of smart devices work together providing a cyber-physical interface for users to run experiments remotely via the Internet. The majority of traditional RAL learning activities focus on undergraduate education where hands-on experience such as building experiments, is not a major focus. In contrast this work is motivated by the need to improve Science, Technology, Engineering and Mathematics (STEM) education for school-aged children. Here physically constructing experiments forms a substantial part of the learning experience. In the proposed approach, experiments can be designed with relatively simple components such as LEGO Mindstorms or Arduinos. The user interface can be programed using SNAP!, a graphical programming tool. While the motivation for the work is educational in nature, this thesis focuses on the technical details of experiment control in an opportunistic distributed environment. P2P RAL aims to enable any two random participants in the system - one in the role of maker creating and hosting an experiment and one in the role of learner using the experiment - to establish a communication session during which the learner runs the remote experiment through the Internet without requiring a centralized experiment or service provider. The makers need to have support to create the experiment according to a common web based programing interface. Thus, the P2P approach of RALs requires an architecture that provides a set of heterogeneous tools which can be used by makers to create a wide variety of experiments. The core contribution of this dissertation is an automaton-based model (twin finite state automata) of the controller units and the controller interface of an experiment. This enables the creation of experiments based on a common platform, both in terms of software and hardware. This architecture enables further development of algorithms for evaluating and supporting the performance of users which is demonstrated through a number of algorithms. It can also ensure the safety of instruments with intelligent tools. The proposed network architecture for P2P RALs is designed to minimise latency to improve user satisfaction and learning experience. As experiment availability is limited for this approach of RALs, novel scheduling strategies are proposed. Each of these contributions has been validated through either simulations, e.g. in case of network architecture and scheduling, or test-bed implementations, in case of the intelligent tools. Three example experiments are discussed along with users' feedback on their experience of creating an experiment and using others’ experimental setup. The focus of the thesis is mainly on the design and hosting of experiments and ensuring user accessibility to them. The main contributions of this thesis are in regards to machine learning and data mining techniques applied to IoT systems in order to realize the P2P RALs system. This research has shown that a P2P architecture of RALs can provide a wide variety of experimental setups in a modular environment with high scalability. It can potentially enhance the user-learning experience while aiding the makers of experiments. It presents new aspects of learning analytics mechanisms to monitor and support users while running experiments, thus lending itself to further research. The proposed mathematical models are also applicable to other Internet of Things applications

    A DHT-Based Discovery Service for the Internet of Things

    Get PDF
    Current trends towards the Future Internet are envisaging the conception of novel services endowed with context-aware and autonomic capabilities to improve end users' quality of life. The Internet of Things paradigm is expected to contribute towards this ambitious vision by proposing models and mechanisms enabling the creation of networks of "smart things" on a large scale. It is widely recognized that efficient mechanisms for discovering available resources and capabilities are required to realize such vision. The contribution of this work consists in a novel discovery service for the Internet of Things. The proposed solution adopts a peer-to-peer approach for guaranteeing scalability, robustness, and easy maintenance of the overall system. While most existing peer-to-peer discovery services proposed for the IoT support solely exact match queries on a single attribute (i.e., the object identifier), our solution can handle multiattribute and range queries. We defined a layered approach by distinguishing three main aspects: multiattribute indexing, range query support, peer-to-peer routing. We chose to adopt an over-DHT indexing scheme to guarantee ease of design and implementation principles. We report on the implementation of a Proof of Concept in a dangerous goods monitoring scenario, and, finally, we discuss test results for structural properties and query performance evaluation

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    A subjective model for trustworthiness evaluation in the social Internet of Things

    Get PDF
    The integration of social networking concepts into the Internet of Things (IoT) has led to the so called Social Internet of Things (SIoT) paradigm, according to which the objects are capable of establishing social relationships in an autonomous way with respect to their owners. The benefits are those of improving scalability in information/service discovery when the SIoT is made of huge numbers of heterogeneous nodes, similarly to what happens with social networks among humans. In this paper we focus on the problem of understanding how the information provided by the other members of the SIoT has to be processed so as to build a reliable system on the basis of the behavior of the objects. We define a subjective model for the management of trustworthiness which builds upon the solutions proposed for P2P networks. Each node computes the trustworthiness of its friends on the basis of its own experience and on the opinion of the common friends with the potential service providers. We employ a feedback system and we combine the credibility and centrality of the nodes to evaluate the trust level. Preliminary simulations show the benefits of the proposed model towards the isolation of almost any malicious node in the network
    corecore