627 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework

    Get PDF
    As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. However, applying the deep learning approach requires expertise for constructing a deep architecture that can take multimodal longitudinal data. Thus, in this paper, a deep learning-based python package for data integration is developed. The python package deep learning-based multimodal longitudinal data integration framework (MildInt) provides the preconstructed deep learning architecture for a classification task. MildInt contains two learning phases: learning feature representation from each modality of data and training a classifier for the final decision. Adopting deep architecture in the first phase leads to learning more task-relevant feature representation than a linear model. In the second phase, linear regression classifier is used for detecting and investigating biomarkers from multimodal data. Thus, by combining the linear model and the deep learning model, higher accuracy and better interpretability can be achieved. We validated the performance of our package using simulation data and real data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging datasets in Alzheimer's disease to predict the disease progression. MildInt is capable of integrating multiple forms of numerical data including time series and non-time series data for extracting complementary features from the multimodal dataset

    Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare:artificial intelligence framework

    Get PDF

    Scalable analysis of multi-modal biomedical data

    Get PDF
    Background Targeted diagnosis and treatment options are dependent on insights drawn from multi-modal analysis of large-scale biomedical datasets. Advances in genomics sequencing, image processing, and medical data management have supported data collection and management within medical institutions. These efforts have produced large-scale datasets and have enabled integrative analyses that provide a more thorough look of the impact of a disease on the underlying system. The integration of large-scale biomedical data commonly involves several complex data transformation steps, such as combining datasets to build feature vectors for learning analysis. Thus, scalable data integration solutions play a key role in the future of targeted medicine. Though large-scale data processing frameworks have shown promising performance for many domains, they fail to support scalable processing of complex datatypes. Solution To address these issues and achieve scalable processing of multi-modal biomedical data, we present TraNCE, a framework that automates the difficulties of designing distributed analyses with complex biomedical data types. Performance We outline research and clinical applications for the platform, including data integration support for building feature sets for classification. We show that the system is capable of outperforming the common alternative, based on “flattening” complex data structures, and runs efficiently when alternative approaches are unable to perform at all
    • …
    corecore