2,281 research outputs found

    Integration and visualisation of clinical-omics datasets for medical knowledge discovery

    Get PDF
    In recent decades, the rise of various omics fields has flooded life sciences with unprecedented amounts of high-throughput data, which have transformed the way biomedical research is conducted. This trend will only intensify in the coming decades, as the cost of data acquisition will continue to decrease. Therefore, there is a pressing need to find novel ways to turn this ocean of raw data into waves of information and finally distil those into drops of translational medical knowledge. This is particularly challenging because of the incredible richness of these datasets, the humbling complexity of biological systems and the growing abundance of clinical metadata, which makes the integration of disparate data sources even more difficult. Data integration has proven to be a promising avenue for knowledge discovery in biomedical research. Multi-omics studies allow us to examine a biological problem through different lenses using more than one analytical platform. These studies not only present tremendous opportunities for the deep and systematic understanding of health and disease, but they also pose new statistical and computational challenges. The work presented in this thesis aims to alleviate this problem with a novel pipeline for omics data integration. Modern omics datasets are extremely feature rich and in multi-omics studies this complexity is compounded by a second or even third dataset. However, many of these features might be completely irrelevant to the studied biological problem or redundant in the context of others. Therefore, in this thesis, clinical metadata driven feature selection is proposed as a viable option for narrowing down the focus of analyses in biomedical research. Our visual cortex has been fine-tuned through millions of years to become an outstanding pattern recognition machine. To leverage this incredible resource of the human brain, we need to develop advanced visualisation software that enables researchers to explore these vast biological datasets through illuminating charts and interactivity. Accordingly, a substantial portion of this PhD was dedicated to implementing truly novel visualisation methods for multi-omics studies.Open Acces

    Machine and deep learning meet genome-scale metabolic modeling

    Get PDF
    Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic modeling has established itself as the main tool to investigate large-scale relationships between genotype, phenotype, and environment. The development and application of these methodological frameworks have occurred independently for the most part, whereas the potential of their integration for biological, biomedical, and biotechnological research is less known. Here, we describe how machine learning and constraint-based modeling can be combined, reviewing recent works at the intersection of both domains and discussing the mathematical and practical aspects involved. We overlap systematic classifications from both frameworks, making them accessible to nonexperts. Finally, we delineate potential future scenarios, propose new joint theoretical frameworks, and suggest concrete points of investigation for this joint subfield. A multiview approach merging experimental and knowledge-driven omic data through machine learning methods can incorporate key mechanistic information in an otherwise biologically-agnostic learning process

    Bayesian networks for omics data analysis

    Get PDF
    This thesis focuses on two aspects of high throughput technologies, i.e. data storage and data analysis, in particular in transcriptomics and metabolomics. Both technologies are part of a research field that is generally called ‘omics’ (or ‘-omics’, with a leading hyphen), which refers to genomics, transcriptomics, proteomics, or metabolomics. Although these techniques study different entities (genes, gene expression, proteins, or metabolites), they all have in common that they use high-throughput technologies such as microarrays and mass spectrometry, and thus generate huge amounts of data. Experiments conducted using these technologies allow one to compare different states of a living cell, for example a healthy cell versus a cancer cell or the effect of food on cell condition, and at different levels. The tools needed to apply omics technologies, in particular microarrays, are often manufactured by different vendors and require separate storage and analysis software for the data generated by them. Moreover experiments conducted using different technologies cannot be analyzed simultaneously to answer a biological question. Chapter 3 presents MADMAX, our software system which supports storage and analysis of data from multiple microarray platforms. It consists of a vendor-independent database which is tightly coupled with vendor-specific analysis tools. Upcoming technologies like metabolomics, proteomics and high-throughput sequencing can easily be incorporated in this system. Once the data are stored in this system, one obviously wants to deduce a biological relevant meaning from these data and here statistical and machine learning techniques play a key role. The aim of such analysis is to search for relationships between entities of interest, such as genes, metabolites or proteins. One of the major goals of these techniques is to search for causal relationships rather than mere correlations. It is often emphasized in the literature that "correlation is not causation" because people tend to jump to conclusions by making inferences about causal relationships when they actually only see correlations. Statistics are often good in finding these correlations; techniques called linear regression and analysis of variance form the core of applied multivariate statistics. However, these techniques cannot find causal relationships, neither are they able to incorporate prior knowledge of the biological domain. Graphical models, a machine learning technique, on the other hand do not suffer from these limitations. Graphical models, a combination of graph theory, statistics and information science, are one of the most exciting things happening today in the field of machine learning applied to biological problems (see chapter 2 for a general introduction). This thesis deals with a special type of graphical models known as probabilistic graphical models, belief networks or Bayesian networks. The advantage of Bayesian networks over classical statistical techniques is that they allow the incorporation of background knowledge from a biological domain, and that analysis of data is intuitive as it is represented in the form of graphs (nodes and edges). Standard statistical techniques are good in describing the data but are not able to find non-linear relations whereas Bayesian networks allow future prediction and discovering nonlinear relations. Moreover, Bayesian networks allow hierarchical representation of data, which makes them particularly useful for representing biological data, since most biological processes are hierarchical by nature. Once we have such a causal graph made either by a computer program or constructed manually we can predict the effects of a certain entity by manipulating the state of other entities, or make backward inferences from effects to causes. Of course, if the graph is big, doing the necessary calculations can be very difficult and CPU-expensive, and in such cases approximate methods are used. Chapter 4 demonstrates the use of Bayesian networks to determine the metabolic state of feeding and fasting mice to determine the effect of a high fat diet on gene expression. This chapter also shows how selection of genes based on key biological processes generates more informative results than standard statistical tests. In chapter 5 the use of Bayesian networks is shown on the combination of gene expression data and clinical parameters, to determine the effect of smoking on gene expression and which genes are responsible for the DNA damage and the raise in plasma cotinine levels of blood of a smoking population. This study was conducted at Maastricht University where 22 twin smokers were profiled. Chapter 6 presents the reconstruction of a key metabolic pathway which plays an important role in ripening of tomatoes, thus showing the versatility of the use of Bayesian networks in metabolomics data analysis. The general trend in research shows a flood of data emerging from sequencing and metabolomics experiments. This means that to perform data mining on these data one requires intelligent techniques that are computationally feasible and able to take the knowledge of experts into account to generate relevant results. Graphical models fit this paradigm well and we expect them to play a key role in mining the data generated from omics experiments. <br/

    Analysis of High-dimensional and Left-censored Data with Applications in Lipidomics and Genomics

    Get PDF
    Recently, there has been an occurrence of new kinds of high- throughput measurement techniques enabling biological research to focus on fundamental building blocks of living organisms such as genes, proteins, and lipids. In sync with the new type of data that is referred to as the omics data, modern data analysis techniques have emerged. Much of such research is focusing on finding biomarkers for detection of abnormalities in the health status of a person as well as on learning unobservable network structures representing functional associations of biological regulatory systems. The omics data have certain specific qualities such as left-censored observations due to the limitations of the measurement instruments, missing data, non-normal observations and very large dimensionality, and the interest often lies in the connections between the large number of variables. There are two major aims in this thesis. First is to provide efficient methodology for dealing with various types of missing or censored omics data that can be used for visualisation and biomarker discovery based on, for example, regularised regression techniques. Maximum likelihood based covariance estimation method for data with censored values is developed and the algorithms are described in detail. Second major aim is to develop novel approaches for detecting interactions displaying functional associations from large-scale observations. For more complicated data connections, a technique based on partial least squares regression is investigated. The technique is applied for network construction as well as for differential network analyses both on multiple imputed censored data and next- generation sequencing count data.Uudet mittausteknologiat ovat mahdollistaneet kokonaisvaltaisen ymmärryksen lisäämisen elollisten organismien molekyylitason prosesseista. Niin kutsutut omiikka-teknologiat, kuten genomiikka, proteomiikka ja lipidomiikka, kykenevät tuottamaan valtavia määriä mittausdataa yksittäisten geenien, proteiinien ja lipidien ekspressio- tai konsentraatiotasoista ennennäkemättÜmällä tarkkuudella. Samanaikaisesti tarve uusien analyysimenetelmien kehittämiselle on kasvanut. Kiinnostuksen kohteena ovat olleet erityisesti tiettyjen sairauksien riskiä tai prognoosia ennustavien merkkiaineiden tunnistaminen sekä biologisten verkkojen rekonstruointi. Omiikka-aineistoilla on useita erityisominaisuuksia, jotka rajoittavat tavanomaisten menetelmien suoraa ja tehokasta soveltamista. Näistä tärkeimpiä ovat vasemmalta sensuroidut ja puuttuvat havainnot, sekä havaittujen muuttujien suuri lukumäärä. Tämän väitÜskirjan ensimmäisenä tavoitteena on tarjota räätälÜityjä analyysimenetelmiä epätäydellisten omiikka-aineistojen visualisointiin ja mallin valintaan käyttäen esimerkiksi regularisoituja regressiomalleja. Kuvailemme myÜs sensuroidulle aineistolle sopivan suurimman uskottavuuden estimaattorin kovarianssimatriisille. Toisena tavoitteena on kehittää uusia menetelmiä omiikka-aineistojen assosiaatiorakenteiden tarkasteluun. Monimutkaisempien rakenteiden tarkasteluun, visualisoimiseen ja vertailuun esitetään erilaisia variaatioita osittaisen pienimmän neliÜsumman menetelmään pohjautuvasta algoritmista, jonka avulla voidaan rekonstruoida assosiaatioverkkoja sekä multi-imputoidulle sensuroidulle että lukumääräaineistoille.Siirretty Doriast

    Prediction of Neighbor-Dependent Microbial Interactions From Limited Population Data

    Get PDF
    Modulation of interspecies interactions by the presence of neighbor species is a key ecological factor that governs dynamics and function of microbial communities, yet the development of theoretical frameworks explicit for understanding context-dependent interactions are still nascent. In a recent study, we proposed a novel rule-based inference method termed the Minimal Interspecies Interaction Adjustment (MIIA) that predicts the reorganization of interaction networks in response to the addition of new species such that the modulation in interaction coefficients caused by additional members is minimal. While the theoretical basis of MIIA was established through the previous work by assuming the full availability of species abundance data in axenic, binary, and complex communities, its extension to actual microbial ecology can be highly constrained in cases that species have not been cultured axenically (e.g., due to their inability to grow in the absence of specific partnerships) because binary interaction coefficients – basic parameters required for implementing the MIIA – are inestimable without axenic and binary population data. Thus, here we present an alternative formulation based on the following two central ideas. First, in the case where only data from axenic cultures are unavailable, we remove axenic populations from governing equations through appropriate scaling. This allows us to predict neighbor-dependent interactions in a relative sense (i.e., fractional change of interactions between with versus without neighbors). Second, in the case where both axenic and binary populations are missing, we parameterize binary interaction coefficients to determine their values through a sensitivity analysis. Through the case study of two microbial communities with distinct characteristics and complexity (i.e., a three-member community where all members can grow independently, and a four-member community that contains member species whose growth is dependent on other species), we demonstrated that despite data limitation, the proposed new formulation was able to successfully predict interspecies interactions that are consistent with experimentally derived results. Therefore, this technical advancement enhances our ability to predict context-dependent interspecies interactions in a broad range of microbial systems without being limited to specific growth conditions as a pre-requisite

    The metaRbolomics Toolbox in Bioconductor and beyond

    Get PDF
    Metabolomics aims to measure and characterise the complex composition of metabolites in a biological system. Metabolomics studies involve sophisticated analytical techniques such as mass spectrometry and nuclear magnetic resonance spectroscopy, and generate large amounts of high-dimensional and complex experimental data. Open source processing and analysis tools are of major interest in light of innovative, open and reproducible science. The scientific community has developed a wide range of open source software, providing freely available advanced processing and analysis approaches. The programming and statistics environment R has emerged as one of the most popular environments to process and analyse Metabolomics datasets. A major benefit of such an environment is the possibility of connecting different tools into more complex workflows. Combining reusable data processing R scripts with the experimental data thus allows for open, reproducible research. This review provides an extensive overview of existing packages in R for different steps in a typical computational metabolomics workflow, including data processing, biostatistics, metabolite annotation and identification, and biochemical network and pathway analysis. Multifunctional workflows, possible user interfaces and integration into workflow management systems are also reviewed. In total, this review summarises more than two hundred metabolomics specific packages primarily available on CRAN, Bioconductor and GitHub

    Integrated Multi-Omics Maps of Lower-Grade Gliomas

    Get PDF
    Multi-omics high-throughput technologies produce data sets which are not restricted to only one but consist of multiple omics modalities, often as patient-matched tumour specimens. The integrative analysis of these omics modalities is essential to obtain a holistic view on the otherwise fragmented information hidden in this data. We present an intuitive method enabling the combined analysis of multi-omics data based on self-organizing maps machine learning. It “portrays” the expression, methylation and copy number variations (CNV) landscapes of each tumour using the same gene-centred coordinate system. It enables the visual evaluation and direct comparison of the different omics layers on a personalized basis. We applied this combined molecular portrayal to lower grade gliomas, a heterogeneous brain tumour entity. It classifies into a series of molecular subtypes defined by genetic key lesions, which associate with large-scale effects on DNA methylation and gene expression, and in final consequence, drive with cell fate decisions towards oligodendroglioma-, astrocytoma- and glioblastoma-like cancer cell lineages with different prognoses. Consensus modes of concerted changes of expression, methylation and CNV are governed by the degree of co-regulation within and between the omics layers. The method is not restricted to the triple-omics data used here. The similarity landscapes reflect partly independent effects of genetic lesions and DNA methylation with consequences for cancer hallmark characteristics such as proliferation, inflammation and blocked differentiation in a subtype specific fashion. It can be extended to integrate other omics features such as genetic mutation, protein expression data as well as extracting prognostic markers

    Omics, Biomarkers, and Aggressive Behavior

    Get PDF
    • …
    corecore