577 research outputs found

    Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    Get PDF
    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production

    Unmanned Aerial Vehicles Modelling and Control Design. A Multi-Objective Optimization Approach

    Full text link
    [ES] Aquesta tesi presenta els resultats de la feina de recerca dut a terme sobre el modelatge i el disseny de controladors per a micro-aeronaus no tripulades mitjançant tècniques d'optimització multi-objectiu. Dos principals camps d'estudi estan presents al llarg d'ella. D'una banda, l'estudi de com modelar i controlar plataformes aèries de petita envergadura. I, de l'altra, l'estudi sobre l'ús de tècniques heurístiques d'optimització multi-objectiu per aplicar en el procés de parametrització de models i controladors en micro-aeronaus no tripulades. S'obtenen com a resultat principal una sèrie d'eines que permeten prescindir d'experiments en túnels de vent o de sensòrica d'alt cost, passant directament a la utilització de dades de vol experimental a la identificació paramètrica de models dinàmics. A més, es demostra com la utilització d'eines d'optimització multi-objectiu en diferents fases de desenvolupament de controladors ajuda a augmentar el coneixement sobre la plataforma a controlar i augmenta la fiabilitat i robustesa dels controladors desenvolupats, disminuint el risc de passar de les fases prèvies de el disseny a la validació en vol real.[CA] Esta tesis presenta los resultados del trabajo de investigación llevado a cabo sobre el modelado y el diseño de controladores para micro-aeronaves no tripuladas mediante técnicas de optimización multi-objetivo. Dos principales campos de estudio están presentes a lo largo de ella. Por un lado, el estudio de cómo modelar y controlar plataformas aéreas de pequeña envergadura. Y, por otro, el estudio sobre el empleo de técnicas heurísticas de optimización multi-objetivo para aplicar en el proceso de parametrización de modelos y controladores en micro-aeronaves no tripuladas. Se obtienen como resultado principal una serie de herramientas que permiten prescindir de experimentos en túneles de viento o de sensórica de alto coste, pasando directamente a la utilización de datos de vuelo experimental en la identificación paramétrica de modelos dinámicos. Además, se demuestra como la utilización de herramientas de optimización multi-objetivo en diferentes fases del desarrollo de controladores ayuda a aumentar el conocimiento sobre la plataforma a controlar y aumenta la fiabilidad y robustez de los controladores desarrollados, disminuyendo el riesgo de pasar de las fases previas del diseño a la validación en vuelo real.[EN] This thesis presents the results of the research work carried out on the modelling and design of controllers for micro-unmanned aerial vehicles by means of multi-objective optimization techniques. Two main fields of study are present throughout it. On one hand, the study of how to model and control small aerial platforms. And, on the other, the study on the use of heuristic multi-objective optimization techniques to apply in the process of models and controllers parameterization in micro-unmanned aerial vehicles. The main result is a series of tools that make it possible manage without wind tunnel experiments or high-cost air-data sensors, going directly to the use of experimental flight data in the parametric identification of dynamic models. In addition, a demonstration is given on how the use of multi-objective optimization tools in different phases of controller development helps to increase knowledge about the platform to be controlled and increases the reliability and robustness of the controllers developed, reducing the risk of hoping from the initial design phases to validation in real flight.Velasco Carrau, J. (2020). Unmanned Aerial Vehicles Modelling and Control Design. A Multi-Objective Optimization Approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/156034TESI

    Optimization and control of a dual-loop EGR system in a modern diesel engine

    Get PDF
    Focusing on the author's research aspects, the intelligent optimization algorithm and advanced control methods of the diesel engine's air path have been proposed in this work. In addition, the simulation platform and the HIL test platform are established for research activities on engine optimization and control. In this thesis, it presents an intelligent transient calibration method using the chaos-enhanced accelerated particle swarm optimization (CAPSO) algorithm. It is a model-based optimization approach. The test results show that the proposed method could locate the global optimal results of the controller parameters within good speed under various working conditions. The engine dynamic response is improved and a measurable drop of engine fuel consumption is acquired. The model predictive control (MPC) is selected for the controllers of DLEGR and VGT in the air-path of a diesel engine. Two MPC-based controllers are developed in this work, they are categorized into linear MPC and nonlinear MPC. Compared with conventional PIO controller, the MPC-based controllers show better reference trajectory tracking performance. Besides, an improvement of the engine fuel economy is obtained. The HIL test indicates the two controllers could be implemented on the real engine

    Optimised combinatorial control strategy for active anti-roll bar system for ground vehicle

    Get PDF
    The objective of this paper is to optimise the proposed control strategy for an active anti-roll bar system using non-dominated sorting genetic algorithm (NSGA-II) tuning method. By using an active anti-roll control strategy, the controller can adapt to current road conditions and manoeuvres unlike a passive anti-roll bar. The optimisation solution offers a rather noticeable improvement results compared to the manually-tuned method. From the application point of view, both tuning process can be used. However, using optimisation method gives a multiple choice of solutions and provides the optimal parameters compared to manual tuning method

    Deployment and control of adaptive building facades for energy generation, thermal insulation, ventilation and daylighting: A review

    Get PDF
    A major objective in the design and operation of buildings is to maintain occupant comfort without incurring significant energy use. Particularly in narrower-plan buildings, the thermophysical properties and behaviour of their façades are often an important determinant of internal conditions. Building facades have been, and are being, developed to adapt their heat and mass transfer characteristics to changes in weather conditions, number of occupants and occupant’s requirements and preferences. Both the wall and window elements of a facade can be engineered to (i) harness solar energy for photovoltaic electricity generation, heating, inducing ventilation and daylighting (ii) provide varying levels of thermal insulation and (iii) store energy. As an adaptive façade may need to provide each attribute to differing extents at particular times, achieving their optimal performance requires effective control. This paper reviews key aspects of current and emerging adaptive façade technologies. These include (i) mechanisms and technologies used to regulate heat and mass transfer flows, daylight, electricity and heat generation (ii) effectiveness and responsiveness of adaptive façades, (iii) appropriate control algorithms for adaptive facades and (iv) sensor information required for façade adaptations to maintain desired occupants’ comfort levels while minimising the energy use

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Soft computing based controllers for automotive air conditioning system with variable speed compressor

    Get PDF
    The inefficient On/Off control for the compressor operation has long been regarded as the major factor contributing to energy loss and poor cabin temperature control of an automotive air conditioning (AAC) system. In this study, two soft computing based controllers, namely the proportional-integral-derivative (PID) based controllers tuned using differential evolution (DE) algorithm and an adaptive neural network based model predictive controller (A-NNMPC), are proposed to be used in the regulation of cabin temperature through proper compressor speed modulation. The implementation of the control schemes in conjunction with DE and neural network aims to improve the AAC performance in terms of reference tracking and power efficiency in comparison to the conventional On/Off operation. An AAC experimental rig equipped with variable speed compressor has been developed for the implementation of the proposed controllers. The dynamics of the AAC system is modelled using a nonlinear autoregressive with exogenous inputs (NARX) neural network. Based on the plant model, the PID gains are offline optimized using the DE algorithm. Experimental results show that the DE tuned PID based controller gives better tracking performance than the Ziegler-Nichols tuning method. For A-NNMPC, the identified NARX model is incorporated as a predictive model in the control system. It is trained in real time throughout the control process and therefore able to adaptively capture the time varying dynamics of the AAC system. Consequently, optimal performance can be achieved even when the operating point is drifted away from the nominal condition. Finally, the comparative assessment indicates clearly that A-NNMPC outperforms its counterparts, followed by DE tuned PID based controller and the On/Off controller. Both proposed control schemes achieve up to 47% power saving over the On/Off operation, indicating that the proposed control schemes can be potential alternatives to replace the On/Off operation in an AAC system

    Flexible operation of large-scale coal-fired power plant integrated with solvent-based post-combustion CO2 capture based on neural network inverse control

    Get PDF
    Post-combustion carbon capture (PCC) with chemical absorption has strong interactions with coal-fired power plant (CFPP). It is necessary to investigate dynamic characteristics of the integrated CFPP-PCC system to gain knowledge for flexible operation. It has been demonstrated that the integrated system exhibits large time inertial and this will incur additional challenge for controller design. Conventional PID controller cannot effectively control CFPP-PCC process. To overcome these barriers, this paper presents an improved neural network inverse control (NNIC) which can quickly operate the integrated system and handle with large time constant. Neural network (NN) is used to approximate inverse dynamic relationships of integrated CFPP-PCC system. The NN inverse model uses setpoints as model inputs and gets predictions of manipulated variables. The predicted manipulated variables are then introduced as feed-forward signals. In order to eliminate steady-state bias and to operate the integrated CFPP-PCC under different working conditions, improvements have been achieved with the addition of PID compensator. The improved NNIC is evaluated in a large-scale supercritical CFPP-PCC plant which is implemented in gCCS toolkit. Case studies are carried out considering variations in power setpoint and capture level setpoint. Simulation results reveal that proposed NNIC can track setpoints quickly and exhibit satisfactory control performances

    Design of Nonlinear PID Controllers and Their Application to a Heat Exchanger System for LNG-fuelled Marine Engines

    Get PDF
    Excessive use of fossil fuels resources is adding several types of greenhouse gases which make the earth warmer. Emissions from ship's exhausts contribute to global climate change, too. The International Maritime Organization (IMO) has adopted regulations to reduce the emission of air pollutants from international shipping, such as major air pollutants, carbon dioxide (CO2), nitrogen oxides (NOx), and sulphur oxides (SOx) under Annex VI of the 1997 MARPOL protocol. Likewise, as regulations on the emission of major air pollutants have become internationally strict, the development of environmentally friendly vessels and engines is required. One of the globally accepted means of reducing emission gases is the use of more eco-friendly fuel, LNG (Liquefied Natural Gas). LNG as a marine fuel reduces air pollutants as referred compared to traditional heavy fuel oil (HFO). Recently, large engine manufacturers are developing LNG-fuelled marine engines. In order to use this cryogenic LNG as a fuel, it is necessary to change it back to a gaseous state. A heat exchanger is used to regasify LNG. The heat exchange takes place between LNG and glycol on the primary loop, and heat exchange occurs between glycol and steam on the secondary loop. These series of processes are called LNG regasification. To control the temperature of the heat exchanger, it is necessary to model the heat exchanger. However, it is not easy to obtain an accurate mathematical model because the heat exchanger has non-linearity and time-varying characteristics. In addition, a fixed-gain controller is bound to have a limitation in its function if parameters of the heat exchanger are changed. Thus, various techniques have been studied to improve the adaptability and robustness of the controller. Recently, there has been using nonlinear PID (NPID) controller for the controlled system which have highly nonlinear and time-varying characteristics during operation. Therefore, this thesis proposes two types of the nonlinear proportional, integral, derivative (NPID) controllers to control the glycol temperature of the regasification system for LNG-fuelled marine engines. The Fully-Nonlinear PID (F-NPID) controller has a structure that the error between the set-point (or reference input) and output (or the measured output) is scaled nonlinearly, and input into the controller to derive proportional, integral, and derivative controllers. The Partial-Nonlinear PID (P-NPID) controller uses the conventional linear PD controller and only I controller uses the method of F-NPID controller. In this case, the nonlinear functions are implemented by the Fuzzy model of Takagi-Sugeno (T-S) type. In addition, the error is continuously scaled so that outstanding control performance can be maintained even when the operating environment is changed, thereby improving the swiftness and the closeness of responses. Also, the parameters of the two proposed controllers are optimally tuned in terms of minimizing the integral of the absolute error (IAE) objective function based on the genetic algorithm (GA). Meanwhile, it is necessary to examine the stability of overall feedback system that can be caused by introducing nonlinear functions during controller design. For this, the stability of the overall feedback system is analyzed by applying the circle stability theorems, which is often used for stability analysis of nonlinear problems. The proposed controllers are verified their performances which are the set-point tracking, robustness against noise and parameter changes, disturbance rejection performances by comparing with two conventional PID controllers and a conventional NPID controller.Chapter 1. Introduction 1 1.1 Research background and trends 1 1.2 Research content and composition 6 Chapter 2. LNG-fuelled Marine Engines 8 2.1 Changes of LNG-fuelled marine engines 8 2.2 Fuel injection of LNG-fuelled marine engines 10 2.3 Fuel supply system of LNG-fuelled marine engines 13 Chapter 3. Modeling of LNG Regasification System 17 3.1 Heat exchanger 17 3.2 LNG regasification system 18 3.3 Modeling of the secondary loop heat exchanger of LNG regasification system 19 3.3.1 Model of an I/P converter 19 3.3.2 Model of a pneumatic control valve 20 3.3.3 Model of a heat exchanger 23 3.3.4 Model of a disturbance 27 3.3.5 Model of a RTD sensor 28 3.3.6 Model of a time delay 29 3.3.7 Open-loop control system 30 Chapter 4. Surveys of Existing PID Controllers 32 4.1 Linear PID controller 32 4.1.1 Structure of the conventional PID controller 32 4.1.2 Characteristics of control actions 33 4.1.3 Effects of PID controller gains 36 4.2 Gain tuning of the conventional PID controller 37 4.2.1 Ziegler-Nichols tuning method 37 4.2.2 Tyreus-Luyben tuning method 40 4.3 Practical PID controller 41 4.4 Existing nonlinear PID controllers 44 4.4.1 Seraji’s NPID controller 45 4.4.2 Korkmaz’s NPID controller 48 Chapter 5. Suggestion of the Proposed Nonlinear PID Controllers 52 5.1 Fully-nonlinear PID controller 52 5.1.1 Nonlinear P block 53 5.1.2 Nonlinear D block 57 5.1.3 Nonlinear I block 57 5.1.4 Relationship between and 60 5.2 Partially-nonlinear PID controller 62 5.2.1 Linear PD block 63 5.2.2 Nonlinear I block 63 5.3 Feedback control systems 63 5.3.1 Modified F-NPID control system 63 5.3.2 P-NPID control system 66 5.4 Tuning of the controller parameters 68 5.4.1 Genetic algorithm 68 5.4.2 Optimal tuning of the controller parameters 73 Chapter 6. Stability Analysis 75 6.1 System description 75 6.2 Basic definitions and theorems 76 6.3 Stability of the NPID control systems 86 6.3.1 Sector condition of nonlinear block 86 6.3.2 Stability analysis of F-NPID control system 87 6.3.3 Stability analysis of P-NPID control system 88 Chapter 7. Simulation and Discussion of Results 90 7.1 Controller parameter tuning 90 7.2 Reponses to set-point changes 91 7.3 Reponses to noise rejection 94 7.4 Reponses to system parameter changes 95 7.5 Reponses to disturbance changes 97 Chapter 8. Conclusion 99 References 101Docto

    Synthesis of an Optimal Dynamic Regulator Based on Linear Quadratic Gaussian (LQG) for the Control of the Relative Humidity under Experimental Greenhouse

    Get PDF
    This paper describes one practical approach that suggests a model based technique to control in real time the relative humidity under greenhouse. The humidity level is one of the most difficult environmental factors to be regulated in greenhouse. Moreover, maintaining and correcting for more or less humidity can be a challenge for even the most sophisticated monitoring and control equipment. For these raisons, a Linear Quadratic Gaussian (LQG) controller for relative humidity regulation under greenhouse turns out to be useful. Indeed a LQG controller is proposed for a relative humidity under a greenhouse control task. So, the state space model, which is best fitting the acquired data, was identified using the Numerical Subspace State Space System IDentification (N4SID) algorithm. The mathematical model that is obtained will be used for evaluating the parameters of LQG strategy. The proposed controller is implemented in two steps, in one hand, Kalman filter (KF) is used to develop an observer that estimates the state of relative humidity under greenhouse. In the other hand, the state feedback controller gain is estimated using a linear quadratic criterion function. The suggested optimal implemented controller using Matlab/Simulink environment is applied to an experimental greenhouse. We found, according to the results, that the controller is able to lead the inside relative humidity to the desired value with high accuracy, regardless of the external disturbances
    corecore