1,954 research outputs found

    An approach for solving constrained reliability-redundancy allocation problems using cuckoo search algorithm

    Get PDF
    AbstractThe main goal of the present paper is to present a penalty based cuckoo search (CS) algorithm to get the optimal solution of reliability – redundancy allocation problems (RRAP) with nonlinear resource constraints. The reliability – redundancy allocation problem involves the selection of components' reliability in each subsystem and the corresponding redundancy levels that produce maximum benefits subject to the system's cost, weight, volume and reliability constraints. Numerical results of five benchmark problems are reported and compared. It has been shown that the solutions by the proposed approach are all superior to the best solutions obtained by the typical approaches in the literature are shown to be statistically significant by means of unpaired pooled t-test

    CFA optimizer: A new and powerful algorithm inspired by Franklin's and Coulomb's laws theory for solving the economic load dispatch problems

    Full text link
    Copyright © 2018 John Wiley & Sons, Ltd. This paper presents a new efficient algorithm inspired by Franklin's and Coulomb's laws theory that is referred to as CFA algorithm, for finding the global solutions of optimal economic load dispatch problems in power systems. CFA is based on the impact of electrically charged particles on each other due to electrical attraction and repulsion forces. The effectiveness of the CFA in different terms is tested on basic benchmark problems. Then, the quality of the CFA to achieve accurate results in different aspects is examined and proven on economic load dispatch problems including 4 different size cases, 6, 10, 15, and 110-unit test systems. Finally, the results are compared with other inspired algorithms as well as results reported in the literature. The simulation results provide evidence for the well-organized and efficient performance of the CFA algorithm in solving great diversity of nonlinear optimization problems

    A hybrid Jaya algorithm for reliability–redundancy allocation problems

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching–learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability–redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series–parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30–100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results

    An efficient particle swarm approach for mixed integer programming in reliability-redundancy optimization application

    Get PDF
    Reliability-redundancy is a recurrent problem in engineering where designed systems are meant to be very reliable. However, the cost of manufacturing very high reliability components increases exponentially, therefore redundancy of less reliable components is a palliative solution. Nonetheless, the question remains how many components of low reliability (and of what extent of reliability) should be coupled to produce a system of high reliability. In this paper, I try to reproduce the performance of particle swarm optimization (PSO) on solving a reliability redundancy-problem. Apart from the high variability, my best result showed to be better than the one presented in the paper

    Comparison of Simulated Annealing and Particle Swarm Optimization on Reliability-Redundancy Problem

    Get PDF
    Reliability-redundancy is a recurrent problem in engineering where designed systems are meant to be very reliable. However, the cost of manufacturing very high reliability components increases exponentially, therefore redundancy of less reliable components is a palliative solution. Nonetheless, the question remains how many components of low reliability (and of what extent of reliability) should be coupled to produce a system of high reliability. In this paper, I compare the performance of particle swarm optimization (PSO) and simulated annealing (SA) on a system of electricity distribution in a rural hospital. The results proved that PSO outperformed SA. In addition, considering the problem as reliability maximization and cost minimization bi-objective give a useful insight on how the cost increase exponentially at a certain given reliability of the system
    • …
    corecore