1,049 research outputs found

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici

    Steering approaches to Pareto-optimal multiobjective reinforcement learning

    Get PDF
    For reinforcement learning tasks with multiple objectives, it may be advantageous to learn stochastic or non-stationary policies. This paper investigates two novel algorithms for learning non-stationary policies which produce Pareto-optimal behaviour (w-steering and Q-steering), by extending prior work based on the concept of geometric steering. Empirical results demonstrate that both new algorithms offer substantial performance improvements over stationary deterministic policies, while Q-steering significantly outperforms w-steering when the agent has no information about recurrent states within the environment. It is further demonstrated that Q-steering can be used interactively by providing a human decision-maker with a visualisation of the Pareto front and allowing them to adjust the agent’s target point during learning. To demonstrate broader applicability, the use of Q-steering in combination with function approximation is also illustrated on a task involving control of local battery storage for a residential solar power system

    Revisiting Norm Optimization for Multi-Objective Black-Box Problems: A Finite-Time Analysis

    Full text link
    The complexity of Pareto fronts imposes a great challenge on the convergence analysis of multi-objective optimization methods. While most theoretical convergence studies have addressed finite-set and/or discrete problems, others have provided probabilistic guarantees, assumed a total order on the solutions, or studied their asymptotic behaviour. In this paper, we revisit the Tchebycheff weighted method in a hierarchical bandits setting and provide a finite-time bound on the Pareto-compliant additive ϵ\epsilon-indicator. To the best of our knowledge, this paper is one of few that establish a link between weighted sum methods and quality indicators in finite time.Comment: submitted to Journal of Global Optimization. This article's notation and terminology is based on arXiv:1612.0841

    A Multi-Objective Deep Reinforcement Learning Framework

    Get PDF
    This paper introduces a new scalable multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We develop a high-performance MODRL framework that supports both single-policy and multi-policy strategies, as well as both linear and non-linear approaches to action selection. The experimental results on two benchmark problems (two-objective deep sea treasure environment and three-objective Mountain Car problem) indicate that the proposed framework is able to find the Pareto-optimal solutions effectively. The proposed framework is generic and highly modularized, which allows the integration of different deep reinforcement learning algorithms in different complex problem domains. This therefore overcomes many disadvantages involved with standard multi-objective reinforcement learning methods in the current literature. The proposed framework acts as a testbed platform that accelerates the development of MODRL for solving increasingly complicated multi-objective problems.Comment: 21 page

    Multi-objective reinforcement learning methods for action selection : dealing with multiple objectives and non-stationarity

    Get PDF
    Multi-objective decision-making entails planning based on a model to find the best policy to solve such problems. If this model is unknown, learning through interaction provides the means to behave in the environment. Multi-objective decision-making in a multi-agent system poses many unsolved challenges. Among them, multiple objectives and non-stationarity, caused by simultaneous learners, have been addressed separately so far. In this work, algorithms that address these issues by taking strengths from different methods are proposed and applied to a route choice scenario formulated as a multi-armed bandit problem. Therefore, the focus is on action selection. In the route choice problem, drivers must select a route while aiming to minimize both their travel time and toll. The proposed algorithms take and combine important aspects from works that tackle only one issue: non-stationarity or multiple objectives, making possible to handle these problems together. The methods used from these works are a set of Upper-Confidence Bound (UCB) algorithms and the Pareto Q-learning (PQL) algorithm. The UCB-based algorithms are Pareto UCB1 (PUCB1), the discounted UCB (DUCB) and sliding window UCB (SWUCB). PUCB1 deals with multiple objectives, while DUCB and SWUCB address non-stationarity in different ways. PUCB1 was extended to include characteristics from DUCB and SWUCB. In the case of PQL, as it is a state-based method that focuses on more than one objective, a modification was made to tackle a problem focused on action selection. Results obtained from a comparison in a route choice scenario show that the proposed algorithms deal with non-stationarity and multiple objectives, while using a discount factor is the best approach. Advantages, limitations and differences of these algorithms are discussed

    Softmax exploration strategies for multiobjective reinforcement learning

    Get PDF
    Despite growing interest over recent years in applying reinforcement learning to multiobjective problems, there has been little research into the applicability and effectiveness of exploration strategies within the multiobjective context. This work considers several widely-used approaches to exploration from the single-objective reinforcement learning literature, and examines their incorporation into multiobjective Q-learning. In particular this paper proposes two novel approaches which extend the softmax operator to work with vector-valued rewards. The performance of these exploration strategies is evaluated across a set of benchmark environments. Issues arising from the multiobjective formulation of these benchmarks which impact on the performance of the exploration strategies are identified. It is shown that of the techniques considered, the combination of the novel softmax–epsilon exploration with optimistic initialisation provides the most effective trade-off between exploration and exploitation

    Distributional Multi-Objective Decision Making

    Full text link
    For effective decision support in scenarios with conflicting objectives, sets of potentially optimal solutions can be presented to the decision maker. We explore both what policies these sets should contain and how such sets can be computed efficiently. With this in mind, we take a distributional approach and introduce a novel dominance criterion relating return distributions of policies directly. Based on this criterion, we present the distributional undominated set and show that it contains optimal policies otherwise ignored by the Pareto front. In addition, we propose the convex distributional undominated set and prove that it comprises all policies that maximise expected utility for multivariate risk-averse decision makers. We propose a novel algorithm to learn the distributional undominated set and further contribute pruning operators to reduce the set to the convex distributional undominated set. Through experiments, we demonstrate the feasibility and effectiveness of these methods, making this a valuable new approach for decision support in real-world problems.Comment: Accepted at IJCAI 202

    Sample-Efficient Multi-Objective Learning via Generalized Policy Improvement Prioritization

    Full text link
    Multi-objective reinforcement learning (MORL) algorithms tackle sequential decision problems where agents may have different preferences over (possibly conflicting) reward functions. Such algorithms often learn a set of policies (each optimized for a particular agent preference) that can later be used to solve problems with novel preferences. We introduce a novel algorithm that uses Generalized Policy Improvement (GPI) to define principled, formally-derived prioritization schemes that improve sample-efficient learning. They implement active-learning strategies by which the agent can (i) identify the most promising preferences/objectives to train on at each moment, to more rapidly solve a given MORL problem; and (ii) identify which previous experiences are most relevant when learning a policy for a particular agent preference, via a novel Dyna-style MORL method. We prove our algorithm is guaranteed to always converge to an optimal solution in a finite number of steps, or an ϵ\epsilon-optimal solution (for a bounded ϵ\epsilon) if the agent is limited and can only identify possibly sub-optimal policies. We also prove that our method monotonically improves the quality of its partial solutions while learning. Finally, we introduce a bound that characterizes the maximum utility loss (with respect to the optimal solution) incurred by the partial solutions computed by our method throughout learning. We empirically show that our method outperforms state-of-the-art MORL algorithms in challenging multi-objective tasks, both with discrete and continuous state and action spaces.Comment: Accepted to AAMAS 202
    corecore