142 research outputs found

    A Simulation-Based Optimization Approach for Integrated Port Resource Allocation Problem

    Get PDF
    Todays, due to the rapid increase in shipping volumes, the container terminals are faced with the challenge to cope with these increasing demands. To handle this challenge, it is crucial to use flexible and efficient optimization approach in order to decrease operating cost. In this paper, a simulation-based optimization approach is proposed to construct a near-optimal berth allocation plan integrated with a plan for tug assignment and for resolution of the quay crane re-allocation problem. The research challenges involve dealing with the uncertainty in arrival times of vessels as well as tidal variations. The effectiveness of the proposed evolutionary algorithm is tested on RAJAEE Port as a real case. According to the simulation result, it can be concluded that the objective function value is affected significantly by the arrival disruptions. The result also demonstrates the effectiveness of the proposed simulation-based optimization approach. </span

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    Integrated Scheduling of Vessels, Cranes and Trains to Minimize Delays in a Seaport Container Terminal

    Get PDF
    The multiple processes taking place on a daily basis at an intermodal container terminal are often considered individually, given the complexity of their joint consideration. Nevertheless, the integrated planning and scheduling of operations in an intermodal terminal, including the arrivals and departures of trains and vessels, is a very relevant topic for terminal managers, which can benefit from the application of Operations Research (OR) techniques to obtain near-optimal solutions without excessive computational cost. Applying the functional integration technique, we present here a mathematical model for this terminal planning process, and solve it using heuristic procedures, given its complexity and size. Details on the benchmark comparison of a genetic algorithm, a simulated annealing routine and a tabu search are provided for different problem instances
    • …
    corecore