9,475 research outputs found

    4D trajectory optimization of commercial flight for green civil aviation

    Get PDF
    For the current development of green civil aviation, this study aims to optimize the green four-dimensional (4D) trajectory of commercial flight by taking into account conventional cost and environmental cost. Some fundamental models, efficient processing methodologies, and conventional objectives are proposed to construct the framework of trajectory optimization. Based on the environmental cost including greenhouse gas cost and harmful gas cost, green objective functions are presented. The A* algorithm and the trapezoidal collocation method are employed to optimize the lateral path and vertical profile for 4D optimization trajectory generation. A case study for the A320 from Barcelona Airport to Frankfurt Airport yields the results that the optimal costs can be obtained under different objectives and the total cost can be more optimized by adjusting the weights of environmental cost and conventional cost. The study builds an aided tool for 4D trajectory optimization and demonstrates that environmental factors and conventional factors should be taken into comprehensive consideration when constructing the flight trajectory in the future, as well as it can underpin the green and sustainable development of the air transport industry

    Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    Get PDF
    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

    Potential Operational Benefits of Multi-layer Point Merge System on Dense TMA Operation Hybrid arrival trajectory optimization applied to Beijing Capital International Airport

    Get PDF
    International audience4D Trajectory optimization in dense terminal control area is one of the most challenging problems in air traffic management research. In order to efficiently and robustly land more aircraft at Beijing Capital International Airport (BCIA), one of the busiest airport in the world, a novel trajectory operation model is proposed, i.e. Multi-layer Point Merge (ML-PM) based Autonomous Arrival Management System. This paper aims at the evaluation of its potential operational benefits in terms of flight efficiency and runway throughput. Horizontal and Vertical profiles of ML-PM route network are introduced, the objective and constraints of this optimizing mathematical model are analyzed, especially the speed change profile and the conflict detection mode for merging zone. Then a case study is made by simulating arrival flows under three different operational modes: baseline, traditional point merge, and the ML-PM. Finally, the results show that rational arrival sequence and conflict-free trajectories are generated in ML-PM system, the benefits gained are very positive. Comparing with baseline and the traditional point merge system, ML-PM system shows good performance on flight time, fuel consumption, CO2 emission. The saving of fuel with ML-PM system is expected around 26838 Yuan per hour at BCIA compared with baseline scenario by numerical simulation. Furthermore, more flexible sequence position shift and continuous descent are possible in ML-PM system, and it is capable to handle the high-density operation environment

    A decomposition-based uncertainty quantification approach for environmental impacts of aviation technology and operation

    Get PDF
    As a measure to manage the climate impact of aviation, significant enhancements to aviation technologies and operations are necessary. When assessing these enhancements and their respective impacts on the climate, it is important that we also quantify the associated uncertainties. This is important to support an effective decision and policymaking process. However, such quantification of uncertainty is challenging, especially in a complex system that comprises multiple interacting components. The uncertainty quantification task can quickly become computationally intractable and cumbersome for one individual or group to manage. Recognizing the challenge of quantifying uncertainty in multicomponent systems, we utilize a divide-and-conquer approach, inspired by the decomposition-based approaches used in multidisciplinary analysis and optimization. Specifically, we perform uncertainty analysis and global sensitivity analysis of our multicomponent aviation system in a decomposition-based manner. In this work, we demonstrate how to handle a high-dimensional multicomponent interface using sensitivity-based dimension reduction and a novel importance sampling method. Our results demonstrate that the decomposition-based uncertainty quantification approach can effectively quantify the uncertainty of a feed-forward multicomponent system for which the component models are housed in different locations and owned by different groups. Keywords: Aviation Environmental Impact; Decomposition; Global Sensitivity Analysis; Uncertainty Quantificatio

    Proceedings of the 4th International Conference on Transport, Atmosphere and Climate

    Get PDF
    The "4th International Conference on Transport, Atmosphere and Climate (TAC-4)" held in Bad Kohlgrub (Germany), 2015, was organised with the objective of updating our knowledge on the impacts of transport on the composition of the atmosphere and on climate, three years after the TAC-3 conference in Prien am Chiemsee (Germany). The TAC-4 conference covered all aspects of the impact of the different modes of transport (aviation, road transport, shipping etc.) on atmospheric chemistry, microphysics, radiation and climate, in particular

    Techno-Economic Analysis and Optimization of Distributed Energy Systems

    Get PDF
    As a promising approach for sustainable development, distributed energy systems have receive increasing attention worldwide and have become a key topic explored by researchers in the areas of building energy systems and smart grid. In line with this research trend, this dissertation presents a techno-economic analysis and optimization of distributed energy systems including combined heat and power (CHP), photovoltaics (PV), battery energy storage (BES), and thermal energy storage (TES) for commercial buildings. First, the techno-economic performance of the CHP system is analyzed and evaluated for four building types including hospital, large office, large hotel, and secondary school, located in different U.S. regions. The energy consumption of each building is obtained by EnergyPlus simulation software. The simulation models of CHP system are established for each building type. From the simulation results, the payback period (PBP) of the CHP system in different locations is calculated. The parameters that have an influence on the PBP of the CHP system are analyzed. Second, PV system and integrated PV and BES (PV-BES) system are investigated for several commercial building types, respectively. The effects of the variation in key parameters, such as PV system capacity, capital cost of PV, sell back ratio, battery capacity, and capital cost of battery, on the performance of PV and/or PV-BES system are explored. Finally, subsystems in previous chapters (CHP, PV, and BES) along with TES system are integrated together based on a proposed control strategy to meet the electric and thermal energy demand of commercial buildings (i.e., hospital and large hotel). A multi-objective particle swarm optimization (PSO) is conducted to determine the optimal size of each subsystem with the objective to minimize the payback period and maximize the reduction of carbon dioxide emissions. The results reveal how the key factors affect the performance of distributed energy system and demonstrate the proposed optimization can be effectively utilized to obtain an optimized design of distributed energy systems that can get a tradeoff between the environmental and economic impacts for different buildings

    Feasibility Study of a Satellite Solar Power Station

    Get PDF
    A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established

    Energy efficient engine sector combustor rig test program

    Get PDF
    Under the NASA-sponsored Energy Efficient Engine program, Pratt & Whitney Aircraft has successfully completed a comprehensive combustor rig test using a 90-degree sector of an advanced two-stage combustor with a segmented liner. Initial testing utilized a combustor with a conventional louvered liner and demonstrated that the Energy Efficient Engine two-stage combustor configuration is a viable system for controlling exhaust emissions, with the capability to meet all aerothermal performance goals. Goals for both carbon monoxide and unburned hydrocarbons were surpassed and the goal for oxides of nitrogen was closely approached. In another series of tests, an advanced segmented liner configuration with a unique counter-parallel FINWALL cooling system was evaluated at engine sea level takeoff pressure and temperature levels. These tests verified the structural integrity of this liner design. Overall, the results from the program have provided a high level of confidence to proceed with the scheduled Combustor Component Rig Test Program

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin
    • …
    corecore