5 research outputs found

    EM-driven miniaturization of high-frequency structures through constrained optimization

    Get PDF
    The trends afoot for miniaturization of high-frequency electronic devices require integration of active and passive high-frequency circuit elements within a single system. This high level of accomplishment not only calls for a cutting-edge integration technology but also necessitates accommodation of the corresponding circuit components within a restricted space in applications such as implantable devices, internet of things (IoT), or 5G communication systems. At the same time, size reduction does not remain the only demand. The performance requirements of the abovementioned systems form a conjugate demand to that of the size reduction, yet with a contrasting nature. A compromise can be achieved through constrained numerical optimization, in which two kinds of constrains may exist: equality and inequality ones. Still, the high cost of electromagnetic-based (EM-based) constraint evaluations remains an obstruction. This issue can be partly mitigated by implicit constraint handling using the penalty function approach. Nevertheless, securing its performance requires expensive guess-work-based identification of the optimum setup of the penalty coefficients. An additional challenge lies in allocating the design within or in the vicinity of a thin feasible region corresponding to equality constraints. Furthermore, multimodal nature of constrained miniaturization problems leads to initial design dependency of the optimization results. Regardless of the constraint type and the corresponding treatment techniques, the computational expenses of the optimization-based size reduction persist as a main challenge. This thesis attempts to address the abovementioned issues specifically pertaining to optimization-driven miniaturization of high frequency structures by developing relevant algorithms in a proper sequence. The first proposed approach with automated adjustment of the penalty functions is based on the concept of sufficient constraint violation improvement, thereby eliminating the costly initial trial-and-error stage for the identification of the optimum setup of the penalty factors. Another introduced approach, i.e., correction-based treatment of the equality constraints alleviates the difficulty of allocating the design within a thin feasible region where designs satisfying the equality constraints reside. The next developed technique allows for global size reduction of high-frequency components. This approach not only eliminates the aforementioned multimodality issues, but also accelerates the overall global optimization process by constructing a dimensionality-reduced surrogate model over a pre-identified feasible region as compared to the complete parameter search space. Further to the latter, an optimization framework employing multi-resolution EM-model management has been proposed to address the high cost issue. The said technique provides nearly 50 percent average acceleration of the optimization-based miniaturization process. The proposed technique pivots upon a newly-defined concept of model-fidelity control based on a combination of algorithmic metrics, namely convergence status and constraint violation level. Numerical validation of the abovementioned algorithms has also been provided using an extensive set of high-frequency benchmark structures. To the best of the author´s knowledge, the presented study is the first investigation of this kind in the literature and can be considered a contribution to the state of the art of automated high-frequency design and miniaturization

    An Early History of Optimization Technology for Automated Design of Microwave Circuits

    Get PDF
    This paper outlines the early history of optimization technology for the design of microwave circuits—a personal journey filled with aspirations, academic contributions, and commercial innovations. Microwave engineers have evolved from being consumers of mathematical optimization algorithms to originators of exciting concepts and technologies that have spread far beyond the boundaries of microwaves. From the early days of simple direct search algorithms based on heuristic methods through gradient-based electromagnetic optimization to space mapping technology we arrive at today’s surrogate methodologies. Our path finally connects to today’s multi-physics, system-level, and measurement-based optimization challenges exploiting confined and feature-based surrogates, cognition-driven space mapping, Bayesian approaches, and more. Our story recognizes visionaries such as William J. Getsinger of the 1960s and Robert Pucel of the 1980s, and highlights a seminal decades-long collaboration with mathematician Kaj Madsen. We address not only academic contributions that provide proof of concept, but also indicate early formative milestones in the development of commercially competitive software specifically featuring optimization technology.ITESO, A.C

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore