202,545 research outputs found

    Pareto optimality in multilayer network growth

    Get PDF
    We model the formation of multi-layer transportation networks as a multi-objective optimization process, where service providers compete for passengers, and the creation of routes is determined by a multi-objective cost function encoding a trade-off between efficiency and competition. The resulting model reproduces well real-world systems as diverse as airplane, train and bus networks, thus suggesting that such systems are indeed compatible with the proposed local optimization mechanisms. In the specific case of airline transportation systems, we show that the networks of routes operated by each company are placed very close to the theoretical Pareto front in the efficiency-competition plane, and that most of the largest carriers of a continent belong to the corresponding Pareto front. Our results shed light on the fundamental role played by multi-objective optimization principles in shaping the structure of large-scale multilayer transportation systems, and provide novel insights to service providers on the strategies for the smart selection of novel routes

    A genetic type-2 fuzzy logic based approach for the optimal allocation of mobile field engineers to their working areas

    Get PDF
    In utility based service industries with a large mobile workforce, there is a need to optimize the process of allocating engineers to tasks (i.e. fixing faults, installing new services, such as internet connections, gas or electricity etc.). Part of the process of optimizing the resource allocation to tasks involves finding the optimum area for an engineer to operate within, which we term as work area optimization. Work area optimization in large businesses can have a noticeable impact on business costs, revenues and customer satisfaction. However when attempting to optimize the workforce in real world scenarios, mostly single objective optimization algorithms are used while employing crisp logic. Nevertheless, there are many objectives that need to be satisfied and hence multi-objective based optimization will be more suitable. Even where multi-objective optimization is employed, the involved systems fail to recognize that these real world problems are full of uncertainties. Type-2 fuzzy logic systems can handle the high level of uncertainties associated with the dynamic and changing environments, such as those presented with real world scheduling problems. This paper presents a novel multi-objective genetic type-2 Fuzzy Logic based System for the optimal allocation of mobile workforces to their working areas. The method has been applied in a real world service industry workforce environment. The results show strong improvements when the proposed multi-objective type-2 fuzzy genetic based optimization system was applied to the work area optimization problem as compared to the heuristic or type-1 single objective optimization of the work area. Such optimization improvements of the working areas will result in improving the utilization of the workforce

    Multi-Objective Optimization for Power Efficient Full-Duplex Wireless Communication Systems

    Full text link
    In this paper, we investigate power efficient resource allocation algorithm design for multiuser wireless communication systems employing a full-duplex (FD) radio base station for serving multiple half-duplex (HD) downlink and uplink users simultaneously. We propose a multi-objective optimization framework for achieving two conflicting yet desirable system design objectives, i.e., total downlink transmit power minimization and total uplink transmit power minimization, while guaranteeing the quality-of-service of all users. To this end, the weighted Tchebycheff method is adopted to formulate a multi-objective optimization problem (MOOP). Although the considered MOOP is non-convex, we solve it optimally by semidefinite programming relaxation. Simulation results not only unveil the trade-off between the total downlink and the total uplink transmit power, but also confirm that the proposed FD system provides substantial power savings over traditional HD systems.Comment: Accepted for presentation at the IEEE Globecom 2015, San Diego, CA, USA, Dec. 201

    Multi-Criteria Optimal Planning for Energy Policies in CLP

    Full text link
    In the policy making process a number of disparate and diverse issues such as economic development, environmental aspects, as well as the social acceptance of the policy, need to be considered. A single person might not have all the required expertises, and decision support systems featuring optimization components can help to assess policies. Leveraging on previous work on Strategic Environmental Assessment, we developed a fully-fledged system that is able to provide optimal plans with respect to a given objective, to perform multi-objective optimization and provide sets of Pareto optimal plans, and to visually compare them. Each plan is environmentally assessed and its footprint is evaluated. The heart of the system is an application developed in a popular Constraint Logic Programming system on the Reals sort. It has been equipped with a web service module that can be queried through standard interfaces, and an intuitive graphic user interface.Comment: Accepted at ICLP2014 Conference as Technical Communication, due to appear in Theory and Practice of Logic Programming (TPLP

    Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems

    Get PDF
    This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the Non-Dominated Sorting Genetic Algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, resulting in fuzzy solutions for the Pareto front. This paper shows the suitability of the approach for quasi real-world problems. In our case-study, the obtained solutions for scenarios including leakage represent the best trade-off among the optimal solutions, under some considered criteria, namely, operational cost, operational lack of service, pressure uniformity and network resilience. Potential future developments could include the use of clustering alternatives to evaluate the goodness of each solution under the considered evaluation criteria

    Modified bipartite matching for multiobjective optimization: Application to antenna assignments in MIMO systems

    Get PDF
    Based on the Hungarian algorithm, the Kuhn-Munkres algorithm can provide the maximum weight bipartite matching for assignment problems. However, it can only solve the single objective optimization problem. In this paper, we formulate the multi-objective optimization (MO) problem for bipartite matching, and propose a modified bipartite matching (MBM) algorithm to approach the Pareto set with a low computational complexity and to dynamically select proper solutions with given constraints among the reduced matching set. In addition, our MBM algorithm is extended to the case of asymmetric bipartite graphs. Finally, we illustrate the application of MBM to antenna assignments in wireless multiple-input multiple-output (MIMO) systems for both symmetric and asymmetric scenarios, where we consider the multi-objective optimization problem with the maximization of the system capacity, total traffic priority, and long-term fairness among all mobile users. The simulation results show that MBM can effectively reduce the matching set and dynamically provide the optimized performance with different quality of service (QoS) requirements. © 2006 IEEE.published_or_final_versio

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems
    • …
    corecore