20,293 research outputs found

    Beyond Personalization: Research Directions in Multistakeholder Recommendation

    Full text link
    Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.Comment: 64 page

    Augmenting Recurrent Neural Networks with High-Order User-Contextual Preference for Session-Based Recommendation

    Full text link
    The recent adoption of recurrent neural networks (RNNs) for session modeling has yielded substantial performance gains compared to previous approaches. In terms of context-aware session modeling, however, the existing RNN-based models are limited in that they are not designed to explicitly model rich static user-side contexts (e.g., age, gender, location). Therefore, in this paper, we explore the utility of explicit user-side context modeling for RNN session models. Specifically, we propose an augmented RNN (ARNN) model that extracts high-order user-contextual preference using the product-based neural network (PNN) in order to augment any existing RNN session model. Evaluation results show that our proposed model outperforms the baseline RNN session model by a large margin when rich user-side contexts are available

    Personalized and situation-aware multimodal route recommendations: the FAVOUR algorithm

    Full text link
    Route choice in multimodal networks shows a considerable variation between different individuals as well as the current situational context. Personalization of recommendation algorithms are already common in many areas, e.g., online retail. However, most online routing applications still provide shortest distance or shortest travel-time routes only, neglecting individual preferences as well as the current situation. Both aspects are of particular importance in a multimodal setting as attractivity of some transportation modes such as biking crucially depends on personal characteristics and exogenous factors like the weather. This paper introduces the FAVourite rOUte Recommendation (FAVOUR) approach to provide personalized, situation-aware route proposals based on three steps: first, at the initialization stage, the user provides limited information (home location, work place, mobility options, sociodemographics) used to select one out of a small number of initial profiles. Second, based on this information, a stated preference survey is designed in order to sharpen the profile. In this step a mass preference prior is used to encode the prior knowledge on preferences from the class identified in step one. And third, subsequently the profile is continuously updated during usage of the routing services. The last two steps use Bayesian learning techniques in order to incorporate information from all contributing individuals. The FAVOUR approach is presented in detail and tested on a small number of survey participants. The experimental results on this real-world dataset show that FAVOUR generates better-quality recommendations w.r.t. alternative learning algorithms from the literature. In particular the definition of the mass preference prior for initialization of step two is shown to provide better predictions than a number of alternatives from the literature.Comment: 12 pages, 6 figures, 1 table. Submitted to IEEE Transactions on Intelligent Transportation Systems journal for publicatio

    Fairness-Aware Recommendation of Information Curators

    Full text link
    This paper highlights our ongoing efforts to create effective information curator recommendation models that can be personalized for individual users, while maintaining important fairness properties. Concretely, we introduce the problem of information curator recommendation, provide a high-level overview of a fairness-aware recommender, and introduce some preliminary experimental evidence over a real-world Twitter dataset. We conclude with some thoughts on future directions.Comment: 5 pages, 3 figures, The 2nd FATREC Workshop on Responsible Recommendation at RecSys, 201

    Visually-Aware Fashion Recommendation and Design with Generative Image Models

    Full text link
    Building effective recommender systems for domains like fashion is challenging due to the high level of subjectivity and the semantic complexity of the features involved (i.e., fashion styles). Recent work has shown that approaches to `visual' recommendation (e.g.~clothing, art, etc.) can be made more accurate by incorporating visual signals directly into the recommendation objective, using `off-the-shelf' feature representations derived from deep networks. Here, we seek to extend this contribution by showing that recommendation performance can be significantly improved by learning `fashion aware' image representations directly, i.e., by training the image representation (from the pixel level) and the recommender system jointly; this contribution is related to recent work using Siamese CNNs, though we are able to show improvements over state-of-the-art recommendation techniques such as BPR and variants that make use of pre-trained visual features. Furthermore, we show that our model can be used \emph{generatively}, i.e., given a user and a product category, we can generate new images (i.e., clothing items) that are most consistent with their personal taste. This represents a first step towards building systems that go beyond recommending existing items from a product corpus, but which can be used to suggest styles and aid the design of new products.Comment: 10 pages, 6 figures. Accepted by ICDM'17 as a long pape

    MMALFM: Explainable Recommendation by Leveraging Reviews and Images

    Full text link
    Although the latent factor model achieves good accuracy in rating prediction, it suffers from many problems including cold-start, non-transparency, and suboptimal results for individual user-item pairs. In this paper, we exploit textual reviews and item images together with ratings to tackle these limitations. Specifically, we first apply a proposed multi-modal aspect-aware topic model (MATM) on text reviews and item images to model users' preferences and items' features from different aspects, and also estimate the aspect importance of a user towards an item. Then the aspect importance is integrated into a novel aspect-aware latent factor model (ALFM), which learns user's and item's latent factors based on ratings. In particular, ALFM introduces a weight matrix to associate those latent factors with the same set of aspects in MATM, such that the latent factors could be used to estimate aspect ratings. Finally, the overall rating is computed via a linear combination of the aspect ratings, which are weighted by the corresponding aspect importance. To this end, our model could alleviate the data sparsity problem and gain good interpretability for recommendation. Besides, every aspect rating is weighted by its aspect importance, which is dependent on the targeted user's preferences and the targeted item's features. Therefore, it is expected that the proposed method can model a user's preferences on an item more accurately for each user-item pair. Comprehensive experimental studies have been conducted on the Yelp 2017 Challenge dataset and Amazon product datasets to demonstrate the effectiveness of our method.Comment: This paper has been accepted by Transactions on Information Systems. arXiv admin note: substantial text overlap with arXiv:1802.0793

    Attribute-aware Collaborative Filtering: Survey and Classification

    Full text link
    Attribute-aware CF models aims at rating prediction given not only the historical rating from users to items, but also the information associated with users (e.g. age), items (e.g. price), or even ratings (e.g. rating time). This paper surveys works in the past decade developing attribute-aware CF systems, and discovered that mathematically they can be classified into four different categories. We provide the readers not only the high level mathematical interpretation of the existing works in this area but also the mathematical insight for each category of models. Finally we provide in-depth experiment results comparing the effectiveness of the major works in each category

    From Word Embeddings to Item Recommendation

    Full text link
    Social network platforms can use the data produced by their users to serve them better. One of the services these platforms provide is recommendation service. Recommendation systems can predict the future preferences of users using their past preferences. In the recommendation systems literature there are various techniques, such as neighborhood based methods, machine-learning based methods and matrix-factorization based methods. In this work, a set of well known methods from natural language processing domain, namely Word2Vec, is applied to recommendation systems domain. Unlike previous works that use Word2Vec for recommendation, this work uses non-textual features, the check-ins, and it recommends venues to visit/check-in to the target users. For the experiments, a Foursquare check-in dataset is used. The results show that use of continuous vector space representations of items modeled by techniques of Word2Vec is promising for making recommendations

    A Jointly Learned Context-Aware Place of Interest Embedding for Trip Recommendations

    Full text link
    Trip recommendation is an important location-based service that helps relieve users from the time and efforts for trip planning. It aims to recommend a sequence of places of interest (POIs) for a user to visit that maximizes the user's satisfaction. When adding a POI to a recommended trip, it is essential to understand the context of the recommendation, including the POI popularity, other POIs co-occurring in the trip, and the preferences of the user. These contextual factors are learned separately in existing studies, while in reality, they impact jointly on a user's choice of a POI to visit. In this study, we propose a POI embedding model to jointly learn the impact of these contextual factors. We call the learned POI embedding a context-aware POI embedding. To showcase the effectiveness of this embedding, we apply it to generate trip recommendations given a user and a time budget. We propose two trip recommendation algorithms based on our context-aware POI embedding. The first algorithm finds the exact optimal trip by transforming and solving the trip recommendation problem as an integer linear programming problem. To achieve a high computation efficiency, the second algorithm finds a heuristically optimal trip based on adaptive large neighborhood search. We perform extensive experiments on real datasets. The results show that our proposed algorithms consistently outperform state-of-the-art algorithms in trip recommendation quality, with an advantage of up to 43% in F1-score

    A Survey of Point-of-interest Recommendation in Location-based Social Networks

    Full text link
    Point-of-interest (POI) recommendation that suggests new places for users to visit arises with the popularity of location-based social networks (LBSNs). Due to the importance of POI recommendation in LBSNs, it has attracted much academic and industrial interest. In this paper, we offer a systematic review of this field, summarizing the contributions of individual efforts and exploring their relations. We discuss the new properties and challenges in POI recommendation, compared with traditional recommendation problems, e.g., movie recommendation. Then, we present a comprehensive review in three aspects: influential factors for POI recommendation, methodologies employed for POI recommendation, and different tasks in POI recommendation. Specifically, we propose three taxonomies to classify POI recommendation systems. First, we categorize the systems by the influential factors check-in characteristics, including the geographical information, social relationship, temporal influence, and content indications. Second, we categorize the systems by the methodology, including systems modeled by fused methods and joint methods. Third, we categorize the systems as general POI recommendation and successive POI recommendation by subtle differences in the recommendation task whether to be bias to the recent check-in. For each category, we summarize the contributions and system features, and highlight the representative work. Moreover, we discuss the available data sets and the popular metrics. Finally, we point out the possible future directions in this area and conclude this survey
    • …
    corecore