317,632 research outputs found

    An optimization method for nacelle design

    Get PDF
    A multi-objective optimiZation method is demonstrated using an evolutionary genetic algorithm. The applicability of this method to preliminary nacelle design is demonstrated by coupling it with a response surface model of a wide range of nacelle designs. These designs were modelled using computational fluid dynamics and a Kriging interpolation was carried out on the results. The NSGA-II algorithm was tested and verified on established multi-dimensional problems. Optimisation on the nacelle model provided 3-dimensional Pareto surfaces of optimal designs at both cruise and off-design conditions. In setting up this methodology several adaptations to the basic NSGA-II algorithm were tested including constraint handling, weighted objective functions and initial sample size. The influence of these operators is demonstrated in terms of the hyper volume of the determined Pareto set

    Diversities and the Geometry of Hypergraphs

    Full text link
    The embedding of finite metrics in 1\ell_1 has become a fundamental tool for both combinatorial optimization and large-scale data analysis. One important application is to network flow problems in which there is close relation between max-flow min-cut theorems and the minimal distortion embeddings of metrics into 1\ell_1. Here we show that this theory can be generalized considerably to encompass Steiner tree packing problems in both graphs and hypergraphs. Instead of the theory of 1\ell_1 metrics and minimal distortion embeddings, the parallel is the theory of diversities recently introduced by Bryant and Tupper, and the corresponding theory of 1\ell_1 diversities and embeddings which we develop here.Comment: 19 pages, no figures. This version: further small correction

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics

    A nature-inspired multi-objective optimisation strategy based on a new reduced space searching algorithm for the design of alloy steels

    Get PDF
    In this paper, a salient search and optimisation algorithm based on a new reduced space searching strategy, is presented. This algorithm originates from an idea which relates to a simple experience when humans search for an optimal solution to a ‘real-life’ problem, i.e. when humans search for a candidate solution given a certain objective, a large area tends to be scanned first; should one succeed in finding clues in relation to the predefined objective, then the search space is greatly reduced for a more detailed search. Furthermore, this new algorithm is extended to the multi-objective optimisation case. Simulation results of optimising some challenging benchmark problems suggest that both the proposed single objective and multi-objective optimisation algorithms outperform some of the other well-known Evolutionary Algorithms (EAs). The proposed algorithms are further applied successfully to the optimal design problem of alloy steels, which aims at determining the optimal heat treatment regime and the required weight percentages for chemical composites to obtain the desired mechanical properties of steel hence minimising production costs and achieving the overarching aim of ‘right-first-time production’ of metals
    corecore