89 research outputs found

    Optimizing performance and energy efficiency of group communication and internet of things in cognitive radio networks

    Get PDF
    Data traffic in the wireless networks has grown at an unprecedented rate. While traditional wireless networks follow fixed spectrum assignment, spectrum scarcity problem becomes a major challenge in the next generations of wireless networks. Cognitive radio is a promising candidate technology that can mitigate this critical challenge by allowing dynamic spectrum access and increasing the spectrum utilization. As users and data traffic demands increases, more efficient communication methods to support communication in general, and group communication in particular, are needed. On the other hand, limited battery for the wireless network device in general makes it a bottleneck for enhancing the performance of wireless networks. In this thesis, the problem of optimizing the performance of group communication in CRNs is studied. Moreover, energy efficient and wireless-powered group communication in CRNs are considered. Additionally, a cognitive mobile base station and a cognitive UAV are proposed for the purpose of optimizing energy transfer and data dissemination, respectively. First, a multi-objective optimization for many-to-many communication in CRNs is considered. Given a many-to-many communication request, the goal is to support message routing from each user in the many-to-many group to each other. The objectives are minimizing the delay and the number of used links and maximizing data rate. The network is modeled using a multi-layer hyper graph, and the secondary users\u27 transmission is scheduled after establishing the conflict graph. Due to the difficulty of solving the problem optimally, a modified version of an Ant Colony meta-heuristic algorithm is employed to solve the problem. Additionally, energy efficient multicast communication in CRNs is introduced while considering directional and omnidirectional antennas. The multicast service is supported such that the total energy consumption of data transmission and channel switching is minimized. The optimization problem is formulated as a Mixed Integer Linear Program (MILP), and a heuristic algorithm is proposed to solve the problem in polynomial time. Second, wireless-powered machine-to-machine multicast communication in cellular networks is studied. To incentivize Internet of Things (IoT) devices to participate in forwarding the multicast messages, each IoT device participates in messages forwarding receives Radio Frequency (RF) energy form Energy Transmitters (ET) not less than the amount of energy used for messages forwarding. The objective is to minimize total transferred energy by the ETs. The problem is formulated mathematically as a Mixed Integer Nonlinear Program (MINLP), and a Generalized Bender Decomposition with Successive Convex Programming (GBD-SCP) algorithm is introduced to get an approximate solution since there is no efficient way in general to solve the problem optimally. Moreover, another algorithm, Constraints Decomposition with SCP and Binary Variable Relaxation (CDR), is proposed to get an approximate solution in a more efficient way. On the other hand, a cognitive mobile station base is proposed to transfer data and energy to a group of IoT devices underlying a primary network. Total energy consumed by the cognitive base station in its mobility, data transmission and energy transfer is minimized. Moreover, the cognitive base station adjusts its location and transmission power and transmission schedule such that data and energy demands are supported within a certain tolerable time and the primary users are protected from harmful interference. Finally, we consider a cognitive Unmanned Aerial Vehicle (UAV) to disseminate data to IoT devices. The UAV senses the spectrum and finds an idle channel, then it predicts when the corresponding primary user of the selected channel becomes active based on the elapsed time of the off period. Accordingly, it starts its transmission at the beginning of the next frame right after finding the channel is idle. Moreover, it decides the number of the consecutive transmission slots that it will use such that the number of interfering slots to the corresponding primary user does not exceed a certain threshold. A mathematical problem is formulated to maximize the minimum number of bits received by the IoT devices. A successive convex programming-based algorithm is used to get a solution for the problem in an efficiency way. It is shown that the used algorithm converges to a Kuhn Tucker point

    Intelligent and secure fog-aided internet of drones

    Get PDF
    Internet of drones (IoD), which utilize drones as Internet of Things (IoT) devices, deploys several drones in the air to collect ground information and send them to the IoD gateway for further processing. Computing tasks are usually offloaded to the cloud data center for intensive processing. However, many IoD applications require real-time processing and event response (e.g., disaster response and virtual reality applications). Hence, data processing by the remote cloud may not satisfy the strict latency requirement. Fog computing attaches fog nodes, which are equipped with computing, storage and networking resources, to IoD gateways to assume a substantial amount of computing tasks instead of performing all tasks in the remote cloud, thus enabling immediate service response. Fog-aided IoD provisions future events prediction and image classification by machine learning technologies, where massive training data are collected by drones and analyzed in the fog node. However, the performance of IoD is greatly affected by drones\u27 battery capacities. Also, aggregating all data in the fog node may incur huge network traffic and drone data privacy leakage. To address the challenge of limited drone battery, the power control problem is first investigated in IoD for the data collection service to minimize the energy consumption of a drone while meeting the quality of service (QoS) requirements. A PowEr conTROL (PETROL) algorithm is then proposed to solve this problem and its convergence rate is derived. The task allocation (which distributes tasks to different fog nodes) and the flying control (which adjusts the drone\u27s flying speed) are then jointly optimized to minimize the drone\u27s journey completion time constrained by the drone\u27s battery capacity and task completion deadlines. In consideration of the practical scenario that the future task information is difficult to obtain, an online algorithm is designed to provide strategies for task allocation and flying control when the drone visits each location without knowing the future. The joint optimization of power control and energy harvesting control is also studied to determine each drone\u27s transmission power and the transmitted energy from the charging station in the time-varying IoD network. The objective is to minimize the long-term average system energy cost constrained by the drones\u27 battery capacities and QoS requirements. A Markov Decision Process (MDP) is formulated to characterize the power and energy harvesting control process in time-varying IoD networks. A modified actor-critic reinforcement learning algorithm is then proposed to tackle the problem. To address the challenge of drone data privacy leakage, federated learning (FL) is proposed to preserve drone data privacy by performing local training in drones and sharing training model parameters with a fog node without uploading drone raw data. However, drone privacy can still be divulged to ground eavesdroppers by wiretapping and analyzing uploaded parameters during the FL training process. The power control problem of all drones is hence investigated to maximize the FL system security rate constrained by drone battery capacities and the QoS requirements (e.g., FL training time). This problem is formulated as a non-linear programming problem and an algorithm is designed to obtain the optimum solutions with low computational complexity. All proposed algorithms are demonstrated to perform better than existing algorithms by extensive simulations and can be implemented in the intelligent and secure fog-aided IoD network to improve system performances on energy efficiency, QoS, and security

    Refining Network Lifetime of Wireless Sensor Network Using Energy-Efficient Clustering and DRL-Based Sleep Scheduling.

    Get PDF
    This research article published by MDPI, 2020Over the recent era, Wireless Sensor Network (WSN) has attracted much attention among industrialists and researchers owing to its contribution to numerous applications including military, environmental monitoring and so on. However, reducing the network delay and improving the network lifetime are always big issues in the domain of WSN. To resolve these downsides, we propose an Energy-Efficient Scheduling using the Deep Reinforcement Learning (DRL) (ES-DRL) algorithm in WSN. ES-DRL contributes three phases to prolong network lifetime and to reduce network delay that is: the clustering phase, duty-cycling phase and routing phase. ES-DRL starts with the clustering phase where we reduce the energy consumption incurred during data aggregation. It is achieved through the Zone-based Clustering (ZbC) scheme. In the ZbC scheme, hybrid Particle Swarm Optimization (PSO) and Affinity Propagation (AP) algorithms are utilized. Duty cycling is adopted in the second phase by executing the DRL algorithm, from which, ES-DRL reduces the energy consumption of individual sensor nodes effectually. The transmission delay is mitigated in the third (routing) phase using Ant Colony Optimization (ACO) and the Firefly Algorithm (FFA). Our work is modeled in Network Simulator 3.26 (NS3). The results are valuable in provisions of upcoming metrics including network lifetime, energy consumption, throughput and delay. From this evaluation, it is proved that our ES-DRL reduces energy consumption, reduces delays by up to 40% and enhances throughput and network lifetime up to 35% compared to the existing cTDMA, DRA, LDC and iABC methods

    Numerical Method For Tsunami Calculation Using Full Navier -Stokes Equations And The Volume Of Fluid Method

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2006A two-dimensional numerical model was developed to study tsunami wave generation, propagation and runup. The model is based on solving the Navier-Stokes (NS) equations. The free-surface motion is tracked using the Volume of Fluid technique. The finite difference two-step projection method is used to solve NS equations and the forward time difference method to discretize the time derivative. A structured mesh is used to discretize the spatial domain. The model has been conceived as a versatile, efficient and practical numerical tool for tsunami computation, which could address a comprehensive understanding of tsunami physics with the ultimate aim of mitigating tsunami hazards. The prediction capability of tsunami generation, propagation and runup is improved by including more accurately the effects of vertical velocity/acceleration, dispersion and wave breaking. The model has the capability to represent complex curved boundaries within a Cartesian grid system and to deal with arbitrary transient-deformed moving boundaries. The numerical model was validated using laboratory experiments and analytical solutions. The model was used as a tool to determine the adequacy of the shallow water (SW) approximation in the application of tsunami simulations. Numerical results were compared with experimental data, analytical solutions and SW results in terms of the time-history free surface elevations and velocity. Reasonable agreements were observed based on the spatial and temporal distributions of the free surface and velocity

    Positioning of a wireless relay node for useful cooperative communication

    Get PDF
    Given the exorbitant amount of data transmitted and the increasing demand for data connectivity in the 21st century, it has become imperative to search for pro-active and sustainable solutions to the effectively alleviate the overwhelming burden imposed on wireless networks. In this study a Decode and Forward cooperative relay channel is analyzed, with the employment of Maximal Ratio Combining at the destination node as the method of offering diversity combining. The system framework used is based on a three-node relay channel with a source node, relay node and a destination node. A model for the wireless communications channel is formulated in order for simulation to be carried out to investigate the impact on performance of relaying on a node placed at the edge of cell. Firstly, an AWGN channel is used before the effect of Rayleigh fading is taken into consideration. Result shows that performance of cooperative relaying performance is always superior or similar to conventional relaying. Additionally, relaying is beneficial when the relay is placed closer to the receiver

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time
    • …
    corecore