2,385 research outputs found

    Improving Mix-CLAHE with ACO for Clearer Oceanic Images

    Full text link
    Oceanic pictures have poor visibility attributable to various factors; weather disturbance, particles in water, lightweight frames and water movement which results in degraded and low contrast pictures of underwater. Visibility restoration refers to varied ways in which aim to decline and remove the degradation that have occurred whereas the digital image has been obtained. The probabilistic Ant Colony Optimization (ACO) approach is presented to solve the problem of designing an optimal route for hard combinatorial problems. It\u27s found that almost all of the prevailing researchers have neglected several problems i.e. no technique is correct for various reasonably circumstances. the prevailing strategies have neglected the utilization of hymenopter colony optimization to cut back the noise and uneven illuminate downside. The main objective of this paper is to judge the performance of ANT colony optimization primarily based haze removal over the obtainable MIX-CLAHE (Contrast Limited adaptive histogram Equalization) technique. The experiment has clearly showed the effectiveness of the projected technique over the obtainable strategies

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Visibility recovery on images acquired in attenuating media. Application to underwater, fog, and mammographic imaging

    Get PDF
    136 p.When acquired in attenuating media, digital images of ten suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasan tness for the user. In these cases, mathematical image processing reveals it self as an ideal tool to recover some of the information lost during the degradation process. In this dissertation,we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fogremoval and mammographic image processing. In the case of digital mammograms,X-ray beams traverse human tissue, and electronic detectorscapture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces low contraste dimages in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility.For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges,in this dissertation we develop new methodologies that rely on: a)physical models of the observed degradation, and b) the calculus of variations.Equipped with this powerful machinery, we design novel theoreticaland computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energie sare composed of different integral terms that are simultaneous lyminimized by means of efficient numerical schemes, producing a clean,visually-pleasant and use ful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validateour methods, confirming that the developed techniques out perform other existing approaches in the literature

    Single-photon detection techniques for underwater imaging

    Get PDF
    This Thesis investigates the potential of a single-photon depth profiling system for imaging in highly scattering underwater environments. This scanning system measured depth using the time-of-flight and the time-correlated single-photon counting (TCSPC) technique. The system comprised a pulsed laser source, a monostatic scanning transceiver, with a silicon single-photon avalanche diode (SPAD) used for detection of the returned optical signal. Spectral transmittance measurements were performed on a number of different water samples in order to characterize the water types used in the experiments. This identified an optimum operational wavelength for each environment selected, which was in the wavelength region of 525 - 690 nm. Then, depth profiles measurements were performed in different scattering conditions, demonstrating high-resolution image re-construction for targets placed at stand-off distances up to nine attenuation lengths, using average optical power in the sub-milliwatt range. Depth and spatial resolution were investigated in several environments, demonstrating a depth resolution in the range of 500 μm to a few millimetres depending on the attenuation level of the medium. The angular resolution of the system was approximately 60 μrad in water with different levels of attenuation, illustrating that the narrow field of view helped preserve spatial resolution in the presence of high levels of forward scattering. Bespoke algorithms were developed for image reconstruction in order to recover depth, intensity and reflectivity information, and to investigate shorter acquisition times, illustrating the practicality of the approach for rapid frame rates. In addition, advanced signal processing approaches were used to investigate the potential of multispectral single-photon depth imaging in target discrimination and recognition, in free-space and underwater environments. Finally, a LiDAR model was developed and validated using experimental data. The model was used to estimate the performance of the system under a variety of scattering conditions and system parameters

    Internet of Underwater Things and Big Marine Data Analytics -- A Comprehensive Survey

    Full text link
    The Internet of Underwater Things (IoUT) is an emerging communication ecosystem developed for connecting underwater objects in maritime and underwater environments. The IoUT technology is intricately linked with intelligent boats and ships, smart shores and oceans, automatic marine transportations, positioning and navigation, underwater exploration, disaster prediction and prevention, as well as with intelligent monitoring and security. The IoUT has an influence at various scales ranging from a small scientific observatory, to a midsized harbor, and to covering global oceanic trade. The network architecture of IoUT is intrinsically heterogeneous and should be sufficiently resilient to operate in harsh environments. This creates major challenges in terms of underwater communications, whilst relying on limited energy resources. Additionally, the volume, velocity, and variety of data produced by sensors, hydrophones, and cameras in IoUT is enormous, giving rise to the concept of Big Marine Data (BMD), which has its own processing challenges. Hence, conventional data processing techniques will falter, and bespoke Machine Learning (ML) solutions have to be employed for automatically learning the specific BMD behavior and features facilitating knowledge extraction and decision support. The motivation of this paper is to comprehensively survey the IoUT, BMD, and their synthesis. It also aims for exploring the nexus of BMD with ML. We set out from underwater data collection and then discuss the family of IoUT data communication techniques with an emphasis on the state-of-the-art research challenges. We then review the suite of ML solutions suitable for BMD handling and analytics. We treat the subject deductively from an educational perspective, critically appraising the material surveyed.Comment: 54 pages, 11 figures, 19 tables, IEEE Communications Surveys & Tutorials, peer-reviewed academic journa

    Data Mining

    Get PDF

    水中環境における光学画像の画質改善に関する研究

    Get PDF
    Since the 1960s, autonomous underwater vehicles (AUVs) and unmanned underwater vehicles (UUVs) have been used for deep-sea exploration. Sonar sensors also have been extensively used to detect and recognize objects in oceans. Although sonar sensors are suitable for long-range distance imaging, due to the principles of acoustic imaging, sonar images are low signal to noise ratio, low resolution and no colors. In order to acquire more detail information of underwater object, a short-range imaging system is required. In this situation, a photo vision sensor is used reasonably.However, the low contrast and color distortion of underwater images are still the major issues for practical applications. Therefore, this thesis will concentrate on the underwater optical images quality improvement.Although the underwater optical imaging technology has made a great progress, the recognition of underwater objects is still a challenging subject nowadays. Different from the normal images, underwater images suffer from poor visibility due to the medium scattering and light distortion. First of all, capturing good quality images in underwater circumstance is difficult, mostly due to attenuation caused by light that is reflected from a surface and is deflected and scattered by particles. Secondly, absorption substantially reduces the light energy. The random attenuation of the light mainly causes the haze appearance along with the part of the light scattered back from the water. In particular, an underwater object which 10 meters away from camera lens is almost indistinguishable because of light absorption. Furthermore, when the artificial light is employed, it can cause a distinctive footprint on the seafloor.In order to obtain high quality underwater images that can be adapted to the traditional image identification algorithms, this work aimed to construct an underwater image processing framework. Due to the special characteristic of underwater images,segment the image to several parts before directly perform a subject identification is thought an efficient way. And for obtaining a good underwater image segment result, the work to improve the quality of the image is necessary. Such work contains image enhancement, color correction and noise reduction, etc. The experiments demonstrate that the proposed methods produced visually pleasing results, and the numerical image quality assessment also proved the effectiveness of this proposal. The organization of this thesis is as follows.Chapter 1 briefly reviews the characteristics and types of acoustic imaging and optical imaging technologies in ocean. The traditional underwater imaging models and the issues of recent underwater imaging systems are also introduced.Chapter 2 describes a novel underwater image enhancement method. The transmission is estimated by the proposed dual-channel prior. Then a robust locally adaptive filter algorithm for enhancing underwater images is used. In addition, theartificial light removal method is also proposed. Compared with the traditional methods, the proposed method obtains better images.Chapter 3 presents a color correction method to recover the distorted image colors. In the experiments, the proposed method recovers the distorted colors in real-time. The color corrected images have a reasonable noise level in their dark regions, and the global contrast is also well improved.Chapter 4 describes two methods for image segmentation. The first one is the automatic clustering Weighted Fuzzy C Means (WFCM) based segmentation method. It automatically obtains a reasonable clustering result for the underwater images with simple texture. The second method is fast Active Contour Model (ACM) based image segmentation method, which dramatically improves the calculation speed. Compare with the traditional methods, the processing speed is improved by over 10 times.Chapter 5 presents the conclusions of this work, and points out some future researchdirections.九州工業大学博士学位論文 学位記番号:工博甲第398号 学位授与年月日:平成27年9月25日1 INTRODUCTION|2 IMAGE ENHANCEMENT|3 COLOR CORRECTION|4 IMAGE SEGMENTATION|5 CONCLUSIONS九州工業大学平成27年

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks

    Imaging through obscurants using time-correlated single-photon counting in the short-wave infrared

    Get PDF
    Single-photon time-of-flight (ToF) light detection and ranging (LiDAR) systems have emerged in recent years as a candidate technology for high-resolution depth imaging in challenging environments, such as long-range imaging and imaging in scattering media. This Thesis investigates the potential of two ToF single-photon depth imaging systems based on the time-correlated single-photon (TCSPC) technique for imaging targets in highly scattering environments. The high sensitivity and picosecond timing resolution afforded by the TCSPC technique offers high-resolution depth profiling of remote targets while maintaining low optical power levels. Both systems comprised a pulsed picosecond laser source with an operating wavelength of 1550 nm, and employed InGaAs/InP SPAD detectors. The main benefits of operating in the shortwave infrared (SWIR) band include improved atmospheric transmission, reduced solar background, as well as increased laser eye-safety thresholds over visible band sensors. Firstly, a monostatic scanning transceiver unit was used in conjunction with a single-element Peltier-cooled InGaAs/InP SPAD detector to attain sub-centimetre resolution three-dimensional images of long-range targets obscured by camouflage netting or in high levels of scattering media. Secondly, a bistatic system, which employed a 32 × 32 pixel format InGaAs/InP SPAD array was used to obtain rapid depth profiles of targets which were flood-illuminated by a higher power pulsed laser source. The performance of this system was assessed in indoor and outdoor scenarios in the presence of obscurants and high ambient background levels. Bespoke image processing algorithms were developed to reconstruct both the depth and intensity images for data with very low signal returns and short data acquisition times, illustrating the practicality of TCSPC-based LiDAR systems for real-time image acquisition in the SWIR wavelength region - even in the photon-starved regime.The Defence Science and Technology Laboratory ( Dstl) National PhD Schem
    corecore