810 research outputs found

    Multi-objective Optimization of Zero Propellant Spacecraft Attitude Maneuvers

    Get PDF
    The zero propellant maneuver (ZPM) is an advanced space station, large angle attitude maneuver technique, using only control momentum gyroscopes (CMGs). Path planning is the key to success, and this paper studies the associated multi-objective optimization problem. Three types of maneuver optimal control problem are formulated: (i) momentum-optimal, (ii) time-optimal, and (iii) energy-optimal. A sensitivity analysis approach is used to study the Pareto optimal front and allows the tradeoffs between the performance indices to be investigated. For example, it is proved that the minimum peak momentum decreases as the maneuver time increases, and the minimum maneuver energy decreases if a larger momentum is available from the CMGs. The analysis is verified and complemented by the numerical computations. Among the three types of ZPM paths, the momentum-optimal solution and the time-optimal solution generally possess the same structure, and they are singular. The energy-optimal solution saves significant energy, while generally maintaining a smooth control profile. © 2014 Springer Science+Business Media New York

    Mission analysis and systems design of a near-term and far-term pole-sitter mission

    Get PDF
    This paper provides a detailed mission analysis and systems design of a near-term and far-term polesitter mission. The pole-sitter concept was previously introduced as a solution to the poor temporal resolution of polar observations from highly inclined, low Earth orbits and the poor high-latitude coverage from geostationary orbit. It considers a spacecraft that is continuously above either the north or south pole and, as such, can provide real-time, continuous and hemispherical coverage of the polar regions. Being on a non-Keplerian orbit, a continuous thrust is required to maintain the pole-sitter position. For this, two different propulsion strategies are proposed, which result in a near-term pole-sitter mission using solar electric propulsion (SEP) and a far-term pole-sitter mission where the SEP thruster is hybridized with a solar sail. For both propulsion strategies, minimum propellant pole-sitter orbits are designed. In order to maximize the spacecraft mass at the start of the operations phase of the mission, the transfer from Earth to the pole-sitter orbit is designed and optimized assuming either a Soyuz or an Ariane 5 launch. The maximized mass upon injection into the pole-sitter orbit is subsequently used in a detailed mass budget analysis that will allow for a trade-off between mission lifetime and payload mass capacity. Also, candidate payloads for a range of applications are investigated. Finally, transfers between north and south pole-sitter orbits are considered to overcome the limitations in observations due to the tilt of the Earth’s rotational axis that causes the poles to be alternately situated in darkness. It will be shown that in some cases these transfers allow for propellant savings, enabling a further extension of the pole-sitter mission

    Fuzzy-Model-Based (FMB) Control of a Spacecraft with Fuel Sloshing Dynamics

    Get PDF
    During the upper-stage separation and orbit injection, orbital control, and attitude maneuver, propellant slosh in partially-filled fuel tanks can cause dynamical instability or pointing errors. The spacecraft dynamics combined with propellant sloshing results in a highly nonlinear and coupled dynamic system that requires a complicated control law. This problem has been a long-standing concern for space missions. The purpose of this research is two fold. The first part is to investigate and develop nonlinear Takagi-Sugeno (T-S) fuzzy model-based controllers for a spacecraft with fuel sloshing considering the input constraints on the actuators. It includes i) a fuzzy controller/observer with a minimum upper-bound control input based on the parallel-distributed compensation (PDC) technique, ii) a fuzzy controller/observer based on the linear quadratic regulator (LQR) that uses the premises of the T-S model, and iii) a robust-optimal fuzzy-model-based controller/observer. The designed controllers are globally asymptotically stable and have a satisfactory performance and robustness. The second part of the research is to develop a mathematical model of a spinning spacecraft with fuel sloshing during high-g maneuvers. The equations of motion of a spacecraft with partially-filled multiple-tanks are derived using the Kane’s method. To do this, two spherical pendulums as an equivalent mechanical model of the fuel sloshing are adopted. The effect of the slosh model parameters on the spacecraft nutation angle is studied. The developed model is validated via several numerical simulations

    System of Systems conceptual design methodology for space exploration

    Get PDF
    The scope of the research is to identify and develop a design methodology for System-of-System (a set of elements and sub-elements able to interact and cooperate in order to complete a mission), based on models, methods and tools, to support the decision makers during the space exploration scenarios design and evaluation activity in line with the concurrent design philosophy. Considering all combinations of system parameters (such as crew size, orbits, launchers, spacecraft, ground and space infrastructures), a large number of mission concept options are possible, even though not all of them are optimal or even feasible. The design methodology is particularly useful in the first phases of the design process (Phase 0 and A) to choose rationally and objectively the best mission concepts that ensure the higher probability of mission success in compliance with the high level requirements deriving from the “user needs”. The first phases of the project are particularly critical for the success of the entire mission because the results of this activity are the starting point of the more costly detailed design phases. Thus, any criticality in the baseline design will involve inevitably into undesirable and costly radical system redesigns during the advanced design phases. For this reason, it is important to develop reliable mathematical models that allow prediction of the system performances notwithstanding the poorly defined environment of very high complexity. In conjunction with the development of the design methodology for system-of-systems and in support of it, a software tool has been developed. The tool has been developed into Matlab environment and provides users with a useful graphical interface. The tool integrates the model of the mission concept, the models of the space elements at system and subsystem level, the cost-effectiveness model or value, the sensitivity and multi-objective optimization analysis. The tool supports users to find a system design solution in compliance with requirements and constraints, such as mass budgets and costs, and provides them with information about cost-effectiveness of the mission. The developed methodology has been applied for the design of several space elements (Man Tended Free Flyer, Cargo Logistic Vehicle, Rover Locomotion System) and several mission scenarios (Moon surface infrastructure support, Cis-Lunar infrastructure delivering, Cis-Lunar infrastructure logistic support), in order to assess advantages and disadvantages of the proposed method. The results of the design activity have been discussed and accepted by the European Space Agency (ESA) and have also been compared and presented to the scientific community. Finally, in a particular case, the study of the locomotion system of a lunar rover, the results of the methodology have been verified through the production and testing of the same system

    Mission analysis and systems design of a near-term and far-term pole-sitter mission

    Get PDF
    This paper provides a detailed mission analysis and systems design of a near-term and far-term pole-sitter mission. The pole-sitter concept was previously introduced as a solution to the poor temporal resolution of polar observations from highly inclined, low Earth orbits and the poor high latitude coverage from geostationary orbit. It considers a spacecraft that is continuously above either the North or South Pole and, as such, can provide real-time, continuous and hemispherical coverage of the polar regions. Being on a non-Keplerian orbit, a continuous thrust is required to maintain the pole-sitter position. For this, two different propulsion strategies are proposed, which result in a near-term pole-sitter mission using solar electric propulsion (SEP) and a far-term pole-sitter mission where the SEP thruster is hybridized with a solar sail. For both propulsion strategies, minimum propellant pole-sitter orbits are designed. In order to maximize the spacecraft mass at the start of the operations phase of the mission, the transfer from Earth to the pole-sitter is designed and optimized assuming either a Soyuz or an Ariane 5 launch. The maximized mass upon injection into the polesitter orbit is subsequently used in a detailed mass budget analysis that will allow for a trade-off between mission lifetime and payload mass capacity. Also, candidate payloads for a range of applications are investigated. Finally, transfers between north and south pole-sitter orbits are considered to overcome the limitations in observations due to the tilt of the polar axis that causes the Poles to be alternately situated in darkness. It will be shown that in some cases these transfers allow for propellant savings, enabling a further extension of the pole-sitter mission

    Optimization of CubeSat System-Level Design and Propulsion Systems for Earth-Escape Missions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140416/1/1.A33136.pd

    Optimal Interferometric Maneuvers for Distributed Telescopes

    Get PDF
    The scienti c community has proposed several missions to expand our knowledge about the universe, its formation and search for distant Earth-like planets. Most of the present space-based observation missions have reached angular resolution limits, therefore the potential bene ts concerning angular resolution and intensity that can be reaped from the realization of interferometry within a distributed satellite telescope have led to the proposal of several multi-spacecraft systems. Among these missions synthetic imaging space based interferometers, consisting of multiple telescope apertures ying in controlled formation in order to combine received information from each of the otilla members are nowadays the subject of interesting research. The objective of synthesizing images with high angular resolution, low ambiguity and high intensity is always a tradeo with the whole fuel consumption of the mission. As a consequence, this research focuses on the design of interferometric maneuvers and optimal interferometric controllers balancing image performance and energy consumption. The rest part of the thesis presents the optimization and design process of coordinated spiral maneuvers due to their interferometric interest when lling the frequency plane of the observed image. On the other hand, the second part of this work focuses in the resolution of an optimal control problem within the LQ framework, to determine the optimal imaging recon gurations of a formation ying system. Its objective is to balance the quality of the celestial observation and the usage of fuel, which are the key aspects of any space-based observation mission. This study concerning implementability and performance of interferometric maneuvers will lead towards the enlargement of mission lifetime and exibility of the system conserving acceptable quality observations.Preprin
    • …
    corecore