30,989 research outputs found

    Designing sustainable cold chains for long-range food distribution: Energy-effective corridors on the Silk Road Belt

    Get PDF
    Modern food production-distribution processes represent a critical stressor for the environment and for natural ecosystems. The rising flows of food across growing and consumption areas couple with the higher expectations of consumers for the quality of products and compel the intensive use of refrigerated rooms and transport means throughout the food supply chain. In order to aid the design of sustainable cold chains that incorporate such aspects, this paper proposes a mixed integer linear programming model to minimize the total energy consumption associated with the cold operations experienced by perishable products. This model is intended for food traders, logistics practitioners, retail managers, and importers collaboratively called to design and plan a cost and environmentally effective supply strategy, physical channels, and infrastructures for cold chains. The proposed model is validated with a case study inspired by the distribution of two example food products, namely fresh apples and ice cream, along the New Silk Road connecting Europe and China. The illustrated analysis investigates the effect of alternative routes and transport modes on the sustainability of the cold chain. It is found that the most energy-efficient route for ice cream is via rail over a northern route and, for apples, is via a southern maritime route, and, for these two routes, the ratios of the total energy consumed to the energy content of the food are 760 and 913, respectively. By incorporating the energy lost due to the food quality decay, the model identifies the optimal route to adopt in accordance with the shelf life and the conservation temperature of each product

    Economic and environmental impacts of the energy source for the utility production system in the HDA process

    Get PDF
    The well-known benchmark process for hydrodealkylation of toluene (HDA) to produce benzene is revisited in a multi-objective approach for identifying environmentally friendly and cost-effective operation solutions. The paper begins with the presentation of the numerical tools used in this work, i.e., a multi-objective genetic algorithm and a Multiple Choice Decision Making procedure. Then, two studies related to the energy source involved in the utility production system (UPS), either fuel oil or natural gas, of the HDA process are carried out. In each case, a multi-objective optimization problem based on the minimization of the total annual cost of the process and of five environmental burdens, that are Global Warming Potential, Acidification Potential, Photochemical Ozone Creation Potential, Human Toxicity Potential and Eutrophication Potential, is solved and the best solution is identified by use of Multiple Choice Decision Making procedures. An assessment of the respective contribution of the HDA process and the UPS towards environmental impacts on the one hand, and of the environmental impacts generated by the main equipment items of the HDA process on the other hand is then performed to compare both solutions. This ‘‘gate-to-gate’’ environmental study is then enlarged by implementing a ‘‘cradle-togate’’ Life Cycle Assessment (LCA), for accounting of emission inventory and extraction. The use of a natural gas turbine, less economically efficient, turns out to be a more attractive alternative to meet the societal expectations concerning environment preservation and sustainable development

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404
    • 

    corecore