78,740 research outputs found

    A new method for feature selection based on fuzzy similarity measures using multi objective genetic algorithm

    Get PDF
    Feature selection (FS) is considered to be an important preprocessing step in machine learning and pattern recognition, and feature evaluation is the key issue for constructing a feature selection algorithm. Feature selection process can also reduce noise and this way enhance the classification accuracy. In this article, feature selection method based on fuzzy similarity measures by multi objective genetic algorithm (FSFSM - MOGA) is introduced and performance of the proposed method on published data sets from UCI was evaluated. The results show the efficiency of the method is compared with the conventional version. When this method multi-objective genetic algorithms and fuzzy similarity measures used in CFS method can improve it

    GA approach for finding Rough Set decision rules based on bireducts

    Get PDF
    Feature selection plays an important role in knowledge discovery and data mining nowadays. In traditional rough set theory, feature selection using reduct - the minimal discerning set of attributes - is an important area. Nevertheless, the original definition of a reduct is restrictive, so in one of the previous research it was proposed to take into account not only the horizontal reduction of information by feature selection, but also a vertical reduction considering suitable subsets of the original set of objects. Following the work mentioned above, a new approach to generate bireducts using a multi--objective genetic algorithm was proposed. Although the genetic algorithms were used to calculate reduct in some previous works, we did not find any work where genetic algorithms were adopted to calculate bireducts. Compared to the works done before in this area, the proposed method has less randomness in generating bireducts. The genetic algorithm system estimated a quality of each bireduct by values of two objective functions as evolution progresses, so consequently a set of bireducts with optimized values of these objectives was obtained. Different fitness evaluation methods and genetic operators, such as crossover and mutation, were applied and the prediction accuracies were compared. Five datasets were used to test the proposed method and two datasets were used to perform a comparison study. Statistical analysis using the one-way ANOVA test was performed to determine the significant difference between the results. The experiment showed that the proposed method was able to reduce the number of bireducts necessary in order to receive a good prediction accuracy. Also, the influence of different genetic operators and fitness evaluation strategies on the prediction accuracy was analyzed. It was shown that the prediction accuracies of the proposed method are comparable with the best results in machine learning literature, and some of them outperformed it

    A lexicographic multi-objective genetic algorithm for multi-label correlation-based feature selection

    Get PDF
    This paper proposes a new Lexicographic multi-objective Genetic Algorithm for Multi-Label Correlation-based Feature Selection (LexGA-ML-CFS), which is an extension of the previous single-objective Genetic Algorithm for Multi-label Correlation-based Feature Selection (GA-ML-CFS). This extension uses a LexGA as a global search method for generating candidate feature subsets. In our experiments, we compare the results obtained by LexGA-ML-CFS with the results obtained by the original hill climbing-based ML-CFS, the single-objective GA-ML-CFS and a baseline Binary Relevance method, using ML-kNN as the multi-label classifier. The results from our experiments show that LexGA-ML-CFS improved predictive accuracy, by comparison with other methods, in some cases, but in general there was no statistically significant different between the results of LexGA-ML-CFS and other methods

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set
    • …
    corecore