6,992 research outputs found

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation

    Full text link
    This paper proposes a new algorithm, referred to as GMAB, that combines concepts from the reinforcement learning domain of multi-armed bandits and random search strategies from the domain of genetic algorithms to solve discrete stochastic optimization problems via simulation. In particular, the focus is on noisy large-scale problems, which often involve a multitude of dimensions as well as multiple local optima. Our aim is to combine the property of multi-armed bandits to cope with volatile simulation observations with the ability of genetic algorithms to handle high-dimensional solution spaces accompanied by an enormous number of feasible solutions. For this purpose, a multi-armed bandit framework serves as a foundation, where each observed simulation is incorporated into the memory of GMAB. Based on this memory, genetic operators guide the search, as they provide powerful tools for exploration as well as exploitation. The empirical results demonstrate that GMAB achieves superior performance compared to benchmark algorithms from the literature in a large variety of test problems. In all experiments, GMAB required considerably fewer simulations to achieve similar or (far) better solutions than those generated by existing methods. At the same time, GMAB's overhead with regard to the required runtime is extremely small due to the suggested tree-based implementation of its memory. Furthermore, we prove its convergence to the set of global optima as the simulation effort goes to infinity

    Dynamically Stable 3D Quadrupedal Walking with Multi-Domain Hybrid System Models and Virtual Constraint Controllers

    Get PDF
    Hybrid systems theory has become a powerful approach for designing feedback controllers that achieve dynamically stable bipedal locomotion, both formally and in practice. This paper presents an analytical framework 1) to address multi-domain hybrid models of quadruped robots with high degrees of freedom, and 2) to systematically design nonlinear controllers that asymptotically stabilize periodic orbits of these sophisticated models. A family of parameterized virtual constraint controllers is proposed for continuous-time domains of quadruped locomotion to regulate holonomic and nonholonomic outputs. The properties of the Poincare return map for the full-order and closed-loop hybrid system are studied to investigate the asymptotic stabilization problem of dynamic gaits. An iterative optimization algorithm involving linear and bilinear matrix inequalities is then employed to choose stabilizing virtual constraint parameters. The paper numerically evaluates the analytical results on a simulation model of an advanced 3D quadruped robot, called GR Vision 60, with 36 state variables and 12 control inputs. An optimal amble gait of the robot is designed utilizing the FROST toolkit. The power of the analytical framework is finally illustrated through designing a set of stabilizing virtual constraint controllers with 180 controller parameters.Comment: American Control Conference 201

    Enabling the “Easy Button” for Broad, Parallel Optimization of Functions Evaluated by Simulation

    Get PDF
    Java Optimization by Simulation (JOBS) is presented: an open-source, object-oriented Java library designed to enable the study, research, and use of optimization for models evaluated by simulation. JOBS includes several novel design features that make it easy for a simulation modeler, without extensive expertise in optimization or parallel computation, to define an optimization model with deterministic and/or stochastic constraints, choose one or more metaheuristics to solve it and run, using massively parallel function evaluation to reduce wall-clock times. JOBS is supported by a new language independent, application programming interface (API) for remote simulation model evaluation and a serverless computing environment to provide massively parallel function evaluation, on demand. Dynamic loop scheduling methods are evaluated in the serverless environment with the opportunity for significant resource contention for master node computing power and network bandwidth. JOBS implements several population-based and single-solution improvement metaheuristics (solvers) for real, discrete, and mixed problems. The object-oriented design is extendible with classes that drastically reduce the amount of code required to implement a new solver and encourage re-use of solvers as building blocks for creating new multi-stage solvers or memetic algorithms

    Bipedal Walking Analysis, Control, and Applications Towards Human-Like Behavior

    Get PDF
    Realizing the essentials of bipedal walking balance is one of the core studies in both robotics and biomechanics. Although the recent developments of walking control on bipedal robots have brought the humanoid automation to a different level, the walking performance is still limited compared to human walking, which also restricts the related applications in biomechanics and rehabilitation. To mitigate the discrepancy between robotic walking and human walking, this dissertation is broken into three parts to develop the control methods to improve three important perspectives: predictive walking behavior, gait optimization, and stepping strategy. To improve the predictive walking behavior captured by the model predictive control (MPC) which is transitionally applied with the nonlinear tracking control in sequence, a quadratic program (QP)-based controller is proposed to unify center of mass (COM) planning using MPC and a nonlinear torque control with control Lyapunov function (CLF). For the gait optimization, we focus on the algorithms of trajectory optimization with direct collocation framework. We propose a robust trajectory optimization using step-time sampling for a simple walker under terrain uncertainties. Towards generating human-like walking gait with multi-domain (phases), we improve the optimization through contact with more accurate transcription method for level walking, and generalize the hybrid zero dynamics (HZD) gait optimization with modified contact conditions for walking on various terrains. The results are compared with human walking gaits, where the similar trends and the sources of discrepancies are identified. In the third part for stepping strategy, we perform step estimation based on capture point (CP) for different human movements, including single-step (balance) recovery, walking and walking with slip. The analysis provides the insights of the efficacy and limitation of CP-based step estimation for human gait
    • …
    corecore