848 research outputs found

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Glowworm swarm optimisation algorithm for virtual machine placement in cloud computing

    Get PDF

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Two-Phase Virtual Machine Placement Algorithms for Cloud Computing: An Experimental Evaluation under Uncertainty

    Get PDF
    Cloud computing providers must support requests for resources in dynamic environments, considering service elasticity and overbooking of physical resources. Due to the randomness of requests, Virtual Machine Placement (VMP) problems should be formulated under uncertainty. In this context, a renewed formulation of the VMP problem is presented, considering the optimization of four objective functions: (i) power consumption, (ii) economical revenue, (iii) resource utilization and (iv) reconfiguration time. To solve the presented formulation, a two-phase optimization scheme is considered, composed by an online incremental VMP phase (iVMP) and an offline VMP reconfiguration (VMPr) phase. An experimental evaluation of five algorithms taking into account 400 different scenarios was performed, considering three VMPr Triggering and two VMPr Recovering methods as well as three VMPr resolution alternatives. Experimental results indicate which algorithm outperformed the other evaluated algorithms, improving the quality of solutions in a scenario-based uncertainty model considering the following evaluation criteria: (i) average, (ii) maximum and (iii) minimum objective function costs.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Two-Phase Virtual Machine Placement Algorithms for Cloud Computing: An Experimental Evaluation under Uncertainty

    Get PDF
    Cloud computing providers must support requests for resources in dynamic environments, considering service elasticity and overbooking of physical resources. Due to the randomness of requests, Virtual Machine Placement (VMP) problems should be formulated under uncertainty. In this context, a renewed formulation of the VMP problem is presented, considering the optimization of four objective functions: (i) power consumption, (ii) economical revenue, (iii) resource utilization and (iv) reconfiguration time. To solve the presented formulation, a two-phase optimization scheme is considered, composed by an online incremental VMP phase (iVMP) and an offline VMP reconfiguration (VMPr) phase. An experimental evaluation of five algorithms taking into account 400 different scenarios was performed, considering three VMPr Triggering and two VMPr Recovering methods as well as three VMPr resolution alternatives. Experimental results indicate which algorithm outperformed the other evaluated algorithms, improving the quality of solutions in a scenario-based uncertainty model considering the following evaluation criteria: (i) average, (ii) maximum and (iii) minimum objective function costs.Sociedad Argentina de Informática e Investigación Operativa (SADIO
    corecore