2,048 research outputs found

    Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

    Full text link
    Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.Comment: Accepted for publication by the International Journal of Computer Vision (IJCV) on 16.02.2016 (submitted on 17.10.14). A combination into a single framework of an ECCV'12 multicamera-RGB and a monocular-RGBD GCPR'14 hand tracking paper with several extensions, additional experiments and detail

    Swarm robotics:design and implementation

    Get PDF
    This project presents a swarming and herding behaviour using simple robots. The main goal is to demonstrate the applicability of artificial intelligence (AI) in simple robotics that can then be scaled to industrial and consumer markets to further the ability of automation. AI can be achieved in many different ways; this paper explores the possible platforms on which to build a simple AI robots from consumer grade microcontrollers. Emphasis on simplicity is the main focus of this paper. Cheap and 8 bit microcontrollers were used as the brain of each robot in a decentralized swarm environment were each robot is autonomous but still a part of the whole. These simple robots don’t communicate directly with each other. They will utilize simple IR sensors to sense each other and simple limit switches to sense other obstacles in their environment. Their main objective is to assemble at certain location after initial start from random locations, and after converging they would move as a single unit without collisions. Using readily available microcontrollers and simple circuit design, semiconsistent swarming behaviour was achieved. These robots don’t follow a set path but will react dynamically to different scenarios, guided by their simple AI algorithm
    • …
    corecore