822 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Représentations de niveau intermédiaire pour la modélisation d'objets

    Get PDF
    In this thesis we propose the use of mid-level representations, and in particular i) medial axes, ii) object parts, and iii)convolutional features, for modelling objects.The first part of the thesis deals with detecting medial axes in natural RGB images. We adopt a learning approach, utilizing colour, texture and spectral clustering features, to build a classifier that produces a dense probability map for symmetry. Multiple Instance Learning (MIL) allows us to treat scale and orientation as latent variables during training, while a variation based on random forests offers significant gains in terms of running time.In the second part of the thesis we focus on object part modeling using both hand-crafted and learned feature representations. We develop a coarse-to-fine, hierarchical approach that uses probabilistic bounds for part scores to decrease the computational cost of mixture models with a large number of HOG-based templates. These efficiently computed probabilistic bounds allow us to quickly discard large parts of the image, and evaluate the exact convolution scores only at promising locations. Our approach achieves a "4times-5times" speedup over the naive approach with minimal loss in performance.We also employ convolutional features to improve object detection. We use a popular CNN architecture to extract responses from an intermediate convolutional layer. We integrate these responses in the classic DPM pipeline, replacing hand-crafted HOG features, and observe a significant boost in detection performance (~14.5% increase in mAP).In the last part of the thesis we experiment with fully convolutional neural networks for the segmentation of object parts.We re-purpose a state-of-the-art CNN to perform fine-grained semantic segmentation of object parts and use a fully-connected CRF as a post-processing step to obtain sharp boundaries.We also inject prior shape information in our model through a Restricted Boltzmann Machine, trained on ground-truth segmentations.Finally, we train a new fully-convolutional architecture from a random initialization, to segment different parts of the human brain in magnetic resonance image data.Our methods achieve state-of-the-art results on both types of data.Dans cette thèse, nous proposons l'utilisation de représentations de niveau intermédiaire, et en particulier i) d'axes médians, ii) de parties d'objets, et iii) des caractéristiques convolutionnels, pour modéliser des objets.La première partie de la thèse traite de détecter les axes médians dans des images naturelles en couleur. Nous adoptons une approche d'apprentissage, en utilisant la couleur, la texture et les caractéristiques de regroupement spectral pour construire un classificateur qui produit une carte de probabilité dense pour la symétrie. Le Multiple Instance Learning (MIL) nous permet de traiter l'échelle et l'orientation comme des variables latentes pendant l'entraînement, tandis qu'une variante fondée sur les forêts aléatoires offre des gains significatifs en termes de temps de calcul.Dans la deuxième partie de la thèse, nous traitons de la modélisation des objets, utilisant des modèles de parties déformables (DPM). Nous développons une approche « coarse-to-fine » hiérarchique, qui utilise des bornes probabilistes pour diminuer le coût de calcul dans les modèles à grand nombre de composants basés sur HOGs. Ces bornes probabilistes, calculés de manière efficace, nous permettent d'écarter rapidement de grandes parties de l'image, et d'évaluer précisément les filtres convolutionnels seulement à des endroits prometteurs. Notre approche permet d'obtenir une accélération de 4-5 fois sur l'approche naïve, avec une perte minimale en performance.Nous employons aussi des réseaux de neurones convolutionnels (CNN) pour améliorer la détection d'objets. Nous utilisons une architecture CNN communément utilisée pour extraire les réponses de la dernière couche de convolution. Nous intégrons ces réponses dans l'architecture DPM classique, remplaçant les descripteurs HOG fabriqués à la main, et nous observons une augmentation significative de la performance de détection (~14.5% de mAP).Dans la dernière partie de la thèse nous expérimentons avec des réseaux de neurones entièrement convolutionnels pous la segmentation de parties d'objets.Nous réadaptons un CNN utilisé à l'état de l'art pour effectuer une segmentation sémantique fine de parties d'objets et nous utilisons un CRF entièrement connecté comme étape de post-traitement pour obtenir des bords fins.Nous introduirons aussi un à priori sur les formes à l'aide d'une Restricted Boltzmann Machine (RBM), à partir des segmentations de vérité terrain.Enfin, nous concevons une nouvelle architecture entièrement convolutionnel, et l'entraînons sur des données d'image à résonance magnétique du cerveau, afin de segmenter les différentes parties du cerveau humain.Notre approche permet d'atteindre des résultats à l'état de l'art sur les deux types de données

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Patient-specific RF safety assessment in MRI: Progress in creating surface-based human head and shoulder models

    No full text
    The interaction of electromagnetic (EM) fields with the human body during magnetic resonance imaging (MRI) is complex and subject specific. MRI radiofrequency (RF) coil performance and safety assessment typically includes numerical EM simulations with a set of human body models. The dimensions of mesh elements used for discretization of the EM simulation domain must be adequate for correct representation of the MRI coil elements, different types of human tissue, and wires and electrodes of additional devices. Examples of such devices include those used during electroencephalography, transcranial magnetic stimulation, and transcranial direct current stimulation, which record complementary information or manipulate brain states during MRI measurement. The electrical contact within and between tissues, as well as between an electrode and the skin, must also be preserved. These requirements can be fulfilled with anatomically correct surface-based human models and EM solvers based on unstructured meshes. Here, we report (i) our workflow used to generate the surface meshes of a head and torso model from the segmented AustinMan dataset, (ii) head and torso model mesh optimization for three-dimensional EM simulation in ANSYS HFSS, and (iii) several case studies of MRI RF coil performance and safety assessment

    CerebNet: A fast and reliable deep-learning pipeline for detailed cerebellum sub-segmentation

    Get PDF
    Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC >0.97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code (https://github.com/Deep-MI/FastSurfer)

    IE-Vnet: deep learning-based segmentation of the inner ear's total fluid space

    Get PDF
    Background In-vivo MR-based high-resolution volumetric quantification methods of the endolymphatic hydrops (ELH) are highly dependent on a reliable segmentation of the inner ear's total fluid space (TFS). This study aimed to develop a novel open-source inner ear TFS segmentation approach using a dedicated deep learning (DL) model. Methods The model was based on a V-Net architecture (IE-Vnet) and a multivariate (MR scans: T1, T2, FLAIR, SPACE) training dataset (D1, 179 consecutive patients with peripheral vestibulocochlear syndromes). Ground-truth TFS masks were generated in a semi-manual, atlas-assisted approach. IE-Vnet model segmentation performance, generalizability, and robustness to domain shift were evaluated on four heterogenous test datasets (D2-D5, n = 4 × 20 ears). Results The IE-Vnet model predicted TFS masks with consistently high congruence to the ground-truth in all test datasets (Dice overlap coefficient: 0.9 ± 0.02, Hausdorff maximum surface distance: 0.93 ± 0.71 mm, mean surface distance: 0.022 ± 0.005 mm) without significant difference concerning side (two-sided Wilcoxon signed-rank test, p>0.05), or dataset (Kruskal-Wallis test, p>0.05; post-hoc Mann-Whitney U, FDR-corrected, all p>0.2). Prediction took 0.2 s, and was 2,000 times faster than a state-of-the-art atlas-based segmentation method. Conclusion IE-Vnet TFS segmentation demonstrated high accuracy, robustness toward domain shift, and rapid prediction times. Its output works seamlessly with a previously published open-source pipeline for automatic ELS segmentation. IE-Vnet could serve as a core tool for high-volume trans-institutional studies of the inner ear. Code and pre-trained models are available free and open-source under https://github.com/pydsgz/IEVNet

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • …
    corecore