2,353 research outputs found

    Multi-mode resource constrained project scheduling problem including multi-skill labor (MRCPSP-MS): model and a solution method

    Get PDF
    The problem that we address in this chapter is an extension of the Resource-Constrained Project Scheduling Problem (RCPSP). It belongs to the class of project scheduling problems with multi-level (or multi-mode) activities, that permit an activity to be processed by resources operating at appropriate modes, where each mode belongs to a different resource level and incurs different cost and duration. Each activity must be allocated exactly one unit of each required resource, and the resource unit may be used at any of its specified levels. The processing time of an activity is given by the maximum of the durations that would result from different resources allocated to that activity. The objective is to find an optimal solution that minimizes the overall project cost, given a delivery date. A penalty is incurred for tardiness beyond the specified delivery date, or a bonus is accrued for early completion. We present a mathematical programming formulation as an accurate problem definition. A Filtered Beam Search (FBS)-based method is used to solve the problem. It was implemented using the C# language. Results of our experimentations on the use of this method are also presented.(undefined

    Project network models with discounted cash flows. A guided tour through recent developments.

    Get PDF
    The vast majority of the project scheduling methodologies presented in the literature have been developed with the objective of minimizing the project duration subject to precedence and other constraints. In doing so, the financial aspects of project management are largely ignored. Recent efforts have taken into account discounted cash flow and have focused on the maximalization of the net present value (npv) of the project as the more appropriate objective. In this paper we offer a guided tour through the important recent developments in the expanding field of research on deterministic and stochastic project network models with discounted cash flows. Subsequent to a close examination of the rationale behind the npv objective, we offer a taxonomy of the problems studied in the literature and critically review the major contributions. Proper attention is given to npv maximization models for the unconstrained scheduling problem with known cash flows, optimal and suboptimal scheduling procedures with various types of resource constraints, and the problem of determining both the timing and amount of payments.Scheduling; Models; Model; Discounted cash flow; Cash flow; Project scheduling; Project management; Management; Net present value; Value; Problems; Maximization; Optimal;

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks

    Client-contractor bargaining on net present value in project scheduling with limited resources

    Get PDF
    The client-contractor bargaining problem addressed here is in the context of a multi-mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity-on-Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two-party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights

    Client-contractor bargaining on net present value in project scheduling with limited resources

    Get PDF
    The client-contractor bargaining problem addressed here is in the context of a multi-mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity-on-Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two-party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights

    On the multi-mode, multi-skill resource constrained project scheduling problem : computational results

    Get PDF
    This paper is concerned with an extension of the Resource-Constrained Project Scheduling Problem (RCPSP) which belongs to the class of the optimization scheduling problems with multi-level (or multi-mode) activities. We developed a practical tool, useful to represent multi-mode projects, and to find a solution for the problem on hand – select the best mode for each resource in each activity in order to minimize the total cost, considering the resource cost, a penalty for tardiness and a bonus for early completion. We implemented an adaptation of a filtered beam search (FBS) algorithm to this problem, using the C# programming language. A “filtered beam” search is a heuristic Branch and Bound (BaB) procedure that uses breadth first search but only the top “best” nodes are kept. We give some of the most important solution details and we report on further computational results, by testing the application for different problem sizes

    On the multi-mode, multi-skill resource constrained project scheduling problem : a software application

    Get PDF
    We consider an extension of the Resource-Constrained Project Scheduling Problem (RCPSP) to multi-level (or multi-mode) activities. Each activity must be allocated exactly one unit of each required resource and the resource unit may be used at any of its specified levels. The processing time of an activity is given by the maximum of the durations that would result from a specific allocation of resources. The objective is to find the optimal solution that minimizes the overall project cost which includes a penalty for tardiness beyond the specified delivery date as well as a bonus for early delivery. We give some of the most important solution details and we report on the preliminary results obtained. The implementation was designed using the C# language

    An equitable approach to the payment scheduling problem in project management

    Get PDF
    This study reports on a new approach to the payment scheduling problem. In this approach, the amount and timing of the payments made by the client and received by the contractor are determined so as to achieve an equitable solution. An equitable solution is defined as one where both the contractor and the client deviate from their respective ideal solutions by an equal percentage. The ideal solutions for the contractor and the client result from having a lump sum payment at the start and end of the project respectively. A double loop genetic algorithm is proposed to solve for an equitable solution. The outer loop represents the client and the inner loop the contractor. The inner loop corresponds to a multi-mode resource constrained project scheduling problem with the objective of maximizing the contractor's net present value for a given payment distribution. When searching for an equitable solution, information flows between the outer and inner loops regarding the payment distribution over the event nodes and the timing of these payments. An example problem is solved and analyzed. A set of 93 problems from the literature are solved and some computational results are reported

    Heuristic algorithms for payment models in project scheduling

    Get PDF
    Imagine that the city council of Ghent has approved the construction of a new bridge across the Leie. The bridge will serve as a means to reduce traffic congestion in the city center, and the city council imposes a deadline to ensure the bridge is completed in time. Based on the specifications, a contractor subsequently determines the required resources (e.g. manpower, machines) and constructs a project schedule. This schedule holds the start and finish times of each activity (e.g. pouring concrete for the bridge foundations), and respects the imposed resource restrictions and the order in which the activities have to be executed (e.g. excavate the river banks before pouring concrete for the foundations). Whereas the objective of the client (i.e. the city council) is clear, they want the bridge to be constructed within the specified deadline, the objective for the contractor is less obvious. Is the goal to minimize the project duration, minimize total costs, maximize net present value (NPV), etc.? Assume that the contractor can construct two schedules. The first schedule minimizes the project duration, obtains a duration of 6 weeks less than the deadline and has a NPV of € 1 mio. The second schedule, on the contrary, maximizes the project NPV, which results in a duration equal to the deadline and a NPV of € 1.2 mio. The latter schedule is obtained by delaying certain activities within the imposed restrictions, starting from the first schedule. If we assume that sufficient margins are included in the proposed schedules to compensate for any delays, the contractor would obviously prefer the second schedule, since the financial return is larger. The crucial question here is, however, how the second schedule can be obtained in an effective and efficient manner starting from the first schedule. This dissertation aims to develop algorithms, which optimize the project NPV under different restrictions, by means of five studies. The first paper chapter focuses on NPV optimization subject to precedence and resource restrictions. It is furthermore assumed that both cash inflows (payments received from the client) and cash outflows (payments to subcontractors) occur at the end of each activity. This way, the size of payments is set in advance by the client and corresponds with each activity’s cash flows, whereas the timing depends on the project schedule by means of the selected activity finish times, and is controlled by the contractor. The second and third studies consider other payment models, in which the client determines the payment times in advance, rather than the size of payments. As an example, the client may stipulate that the contractor is paid every month, whereas the size of the payments depends on the work performed by the contractor in each month. Both studies furthermore include several alternatives or modes for each activity. These modes constitute different duration-resource combinations for an activity, out of which one has to be selected by the contractor, and allow for a greater degree of flexibility. The fourth paper chapter introduces capital management on the side of the contractor, by imposing that the total funds available should not become negative during the project. The total funds or cash balance consider the initial capital available and respectively add or subtract cash in- and outflows. A general model is constructed which affects the capital availability throughout the project. The fifth and final study integrates the resource availability in the scheduling process, and as such optimizes the NPV of the project including the resource usage cost, rather than decide on the amount of a resource made available first and schedule the activities second

    Mitigating Space Industry Supply Chain Risk Thru Risk-Based Analysis

    Get PDF
    Using risk-based analysis to consider supply chain disruptions and uncertainty along with potential mitigation strategies in the early stages of space industry projects can be used avoid schedule delays, cost overruns, and lead to successful project outcomes. Space industry projects, especially launch vehicles, are complicated assemblies of high-technology and specialized components. Components are engineered, procured, manufactured, and assembled for specific missions or projects, unlike make-to-stock manufacturing where assemblies are produced at a mass production rate for customers to choose off the shelf or lot, like automobiles. The supply chain for a space industry project is a large, complicated web where one disruption, especially for sole-sourced components, could ripple through the project causing delays at multiple project milestones. This ripple effect can even cause the delay or cancelation of the entire project unless project managers develop and employ risk mitigations strategies against supply chain disruption and uncertainty. The unpredictability of when delays and disruptions may occur makes managing these projects extremely difficult. By using risk-based analysis, project managers can better plan for and mitigate supply chain risk and uncertainty for space industry projects to better manage project success. Space industry project supply chain risk and uncertainty can be evaluated through risk assessments at major project milestones and during the procurement process. Mitigations for identified risks can be evaluated and implemented to better manage project success. One mitigation strategy to supply chain risk and uncertainty is implementing a dual or multi-supplier sourcing procurement strategy. This research explores using a risk-based analysis to identify where this mitigation strategy can be beneficial for space industry projects and how its implementation affects project success. First a supply chain risk assessment and mitigation decision tool will be used at major project milestones to show where a multi-sourcing strategy may be beneficial. Next, updated supplier quote evaluation tools will confirm the usage of multiple suppliers for procurement. Modeling and simulation are then used to show the impact of that strategy on the project success metrics of cost and schedule
    corecore