33 research outputs found

    Machine learning with neuroimaging data to identify autism spectrum disorder: a systematic review and meta-analysis

    Get PDF
    Purpose: Autism Spectrum Disorder (ASD) is diagnosed through observation or interview assessments, which is time-consuming, subjective, and with questionable validity and reliability. Thus, we aimed to evaluate the role of machine learning (ML) with neuroimaging data to provide a reliable classification of ASD. Methods: A systematic search of PubMed, Scopus, and Embase was conducted to identify relevant publications. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess the studies’ quality. A bivariate random-effects model meta-analysis was employed to evaluate the pooled sensitivity, the pooled specificity, and the diagnostic performance through the hierarchical summary receiver operating characteristic (HSROC) curve of ML with neuroimaging data in classifying ASD. Meta-regression was also performed. Results: Forty-four studies (5697 ASD and 6013 typically developing individuals [TD] in total) were included in the quantitative analysis. The pooled sensitivity for differentiating ASD from TD individuals was 86.25 95% confidence interval [CI] (81.24, 90.08), while the pooled specificity was 83.31 95% CI (78.12, 87.48) with a combined area under the HSROC (AUC) of 0.889. Higgins I2 (> 90%) and Cochran’s Q (p < 0.0001) suggest a high degree of heterogeneity. In the bivariate model meta-regression, a higher pooled specificity was observed in studies not using a brain atlas (90.91 95% CI [80.67, 96.00], p = 0.032). In addition, a greater pooled sensitivity was seen in studies recruiting both males and females (89.04 95% CI [83.84, 92.72], p = 0.021), and combining imaging modalities (94.12 95% [85.43, 97.76], p = 0.036). Conclusion: ML with neuroimaging data is an exciting prospect in detecting individuals with ASD but further studies are required to improve its reliability for usage in clinical practice

    Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer's disease

    Get PDF
    Detection of early stages of Alzheimer's disease (AD) (i.e., mild cognitive impairment (MCI)) is important to maximize the chances to delay or prevent progression to AD. Brain connectivity networks inferred from medical imaging data have been commonly used to distinguish MCI patients from normal controls (NC). However, existing methods still suffer from limited performance, and classification remains mainly based on single modality data. This paper proposes a new model to automatically diagnosing MCI (early MCI (EMCI) and late MCI (LMCI)) and its earlier stages (i.e., significant memory concern (SMC)) by combining low-rank self-calibrated functional brain networks and structural brain networks for joint multi-task learning. Specifically, we first develop a new functional brain network estimation method. We introduce data quality indicators for self-calibration, which can improve data quality while completing brain network estimation, and perform correlation analysis combined with low-rank structure. Second, functional and structural connected neuroimaging patterns are integrated into our multi-task learning model to select discriminative and informative features for fine MCI analysis. Different modalities are best suited to undertake distinct classification tasks, and similarities and differences among multiple tasks are best determined through joint learning to determine most discriminative features. The learning process is completed by non-convex regularizer, which effectively reduces the penalty bias of trace norm and approximates the original rank minimization problem. Finally, the most relevant disease features classified using a support vector machine (SVM) for MCI identification. Experimental results show that our method achieves promising performance with high classification accuracy and can effectively discriminate between different sub-stages of MCI

    AUTOMATED ARTIFACT REMOVAL AND DETECTION OF MILD COGNITIVE IMPAIRMENT FROM SINGLE CHANNEL ELECTROENCEPHALOGRAPHY SIGNALS FOR REAL-TIME IMPLEMENTATIONS ON WEARABLES

    Get PDF
    Electroencephalogram (EEG) is a technique for recording asynchronous activation of neuronal firing inside the brain with non-invasive scalp electrodes. EEG signal is well studied to evaluate the cognitive state, detect brain diseases such as epilepsy, dementia, coma, autism spectral disorder (ASD), etc. In this dissertation, the EEG signal is studied for the early detection of the Mild Cognitive Impairment (MCI). MCI is the preliminary stage of Dementia that may ultimately lead to Alzheimers disease (AD) in the elderly people. Our goal is to develop a minimalistic MCI detection system that could be integrated to the wearable sensors. This contribution has three major aspects: 1) cleaning the EEG signal, 2) detecting MCI, and 3) predicting the severity of the MCI using the data obtained from a single-channel EEG electrode. Artifacts such as eye blink activities can corrupt the EEG signals. We investigate unsupervised and effective removal of ocular artifact (OA) from single-channel streaming raw EEG data. Wavelet transform (WT) decomposition technique was systematically evaluated for effectiveness of OA removal for a single-channel EEG system. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), is studied with four WT basis functions: haar, coif3, sym3, and bior4.4. The performance of the artifact removal algorithm was evaluated by the correlation coefficients (CC), mutual information (MI), signal to artifact ratio (SAR), normalized mean square error (NMSE), and time-frequency analysis. It is demonstrated that WT can be an effective tool for unsupervised OA removal from single channel EEG data for real-time applications.For the MCI detection from the clean EEG data, we collected the scalp EEG data, while the subjects were stimulated with five auditory speech signals. We extracted 590 features from the Event-Related Potential (ERP) of the collected EEG signals, which included time and spectral domain characteristics of the response. The top 25 features, ranked by the random forest method, were used for classification models to identify subjects with MCI. Robustness of our model was tested using leave-one-out cross-validation while training the classifiers. Best results (leave-one-out cross-validation accuracy 87.9%, sensitivity 84.8%, specificity 95%, and F score 85%) were obtained using support vector machine (SVM) method with Radial Basis Kernel (RBF) (sigma = 10, cost = 102). Similar performances were also observed with logistic regression (LR), further validating the results. Our results suggest that single-channel EEG could provide a robust biomarker for early detection of MCI. We also developed a single channel Electro-encephalography (EEG) based MCI severity monitoring algorithm by generating the Montreal Cognitive Assessment (MoCA) scores from the features extracted from EEG. We performed multi-trial and single-trail analysis for the algorithm development of the MCI severity monitoring. We studied Multivariate Regression (MR), Ensemble Regression (ER), Support Vector Regression (SVR), and Ridge Regression (RR) for multi-trial and deep neural regression for the single-trial analysis. In the case of multi-trial, the best result was obtained from the ER. In our single-trial analysis, we constructed the time-frequency image from each trial and feed it to the convolutional deep neural network (CNN). Performance of the regression models was evaluated by the RMSE and the residual analysis. We obtained the best accuracy with the deep neural regression method

    Detection of Alzheimer's disease onset using MRI and PET neuroimaging: Longitudinal data analysis and machine learning

    Get PDF
    The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset

    Machine learning for efficient recognition of anatomical structures and abnormalities in biomedical images

    Get PDF
    Three studies have been carried out to investigate new approaches to efficient image segmentation and anomaly detection. The first study investigates the use of deep learning in patch based segmentation. Current approaches to patch based segmentation use low level features such as the sum of squared differences between patches. We argue that better segmentation can be achieved by harnessing the power of deep neural networks. Currently these networks make extensive use of convolutional layers. However, we argue that in the context of patch based segmentation, convolutional layers have little advantage over the canonical artificial neural network architecture. This is because a patch is small, and does not need decomposition and thus will not benefit from convolution. Instead, we make use of the canonical architecture in which neurons only compute dot products, but also incorporate modern techniques of deep learning. The resulting classifier is much faster and less memory-hungry than convolution based networks. In a test application to the segmentation of hippocampus in human brain MR images, we significantly outperformed prior art with a median Dice score up to 90.98% at a near real-time speed (<1s). The second study is an investigation into mouse phenotyping, and develops a high-throughput framework to detect morphological abnormality in mouse embryo micro-CT images. Existing work in this line is centred on, either the detection of phenotype-specific features or comparative analytics. The former approach lacks generality and the latter can often fail, for example, when the abnormality is not associated with severe volume variation. Both these approaches often require image segmentation as a pre-requisite, which is very challenging when applied to embryo phenotyping. A new approach to this problem in which non-rigid registration is combined with robust principal component analysis (RPCA), is proposed. The new framework is able to efficiently perform abnormality detection in a batch of images. It is sensitive to both volumetric and non-volumetric variations, and does not require image segmentation. In a validation study, it successfully distinguished the abnormal VSD and polydactyly phenotypes from the normal, respectively, at 85.19% and 88.89% specificities, with 100% sensitivity in both cases. The third study investigates the RPCA technique in more depth. RPCA is an extension of PCA that tolerates certain levels of data distortion during feature extraction, and is able to decompose images into regular and singular components. It has previously been applied to many computer vision problems (e.g. video surveillance), attaining excellent performance. However these applications commonly rest on a critical condition: in the majority of images being processed, there is a background with very little variation. By contrast in biomedical imaging there is significant natural variation across different images, resulting from inter-subject variability and physiological movements. Non-rigid registration can go some way towards reducing this variance, but cannot eliminate it entirely. To address this problem we propose a modified framework (RPCA-P) that is able to incorporate natural variation priors and adjust outlier tolerance locally, so that voxels associated with structures of higher variability are compensated with a higher tolerance in regularity estimation. An experimental study was applied to the same mouse embryo micro-CT data, and notably improved the detection specificity to 94.12% for the VSD and 90.97% for the polydactyly, while maintaining the sensitivity at 100%.Open Acces

    Supervised machine learning in psychiatry:towards application in clinical practice

    Get PDF
    In recent years, the field of machine learning (often named with the more general term artificial intelligence) has literally exploded and its application has been proposed in basically all fields, including psychiatry and mental health. This has been motivated by the promise of using machine learning to develop new clinical tools that could help perform personalized predictions and recommendations, ultimately improving the results achievable in the psychiatric clinical practice that still faces only a limited success in the fight against mental diseases. However, despite this huge interest, there is still a substantial lack of tools in psychiatry that are based on machine learning algorithms. Massimiliano Grassi, in his Ph.D. thesis, investigates the challenges of translating machine learning algorithms into clinical practice and proposes innovative solutions to these challenges. The thesis presents the development and validation of new algorithms for the prediction of the onset of Alzheimer’s disease, the remission of obsessive-compulsive disorder, and the automatization of sleep staging in polysomnography, a method to diagnose sleep disorders. The results from these studies demonstrate that the use of machine learning in psychiatric clinical practice is not just a promise, and it is possible to develop machine learning algorithms that achieve clinically relevant performance even if based solely on information that can be easily accessible in the daily clinical routine
    corecore