1,728 research outputs found

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Robust visual tracking via speedup multiple kernel ridge regression

    Get PDF
    Most of the tracking methods attempt to build up feature spaces to represent the appearance of a target. However, limited by the complex structure of the distribution of features, the feature spaces constructed in a linear manner cannot characterize the nonlinear structure well. We propose an appearance model based on kernel ridge regression for visual tracking. Dense sampling is fulfilled around the target image patches to collect the training samples. In order to obtain a kernel space in favor of describing the target appearance, multiple kernel learning is introduced into the selection of kernels. Under the framework, instead of a single kernel, a linear combination of kernels is learned from the training samples to create a kernel space. Resorting to the circulant property of a kernel matrix, a fast interpolate iterative algorithm is developed to seek coefficients that are assigned to these kernels so as to give an optimal combination. After the regression function is learned, all candidate image patches gathered are taken as the input of the function, and the candidate with the maximal response is regarded as the object image patch. Extensive experimental results demonstrate that the proposed method outperforms other state-of-the-art tracking methods

    A kernel-based framework for medical big-data analytics

    Get PDF
    The recent trend towards standardization of Electronic Health Records (EHRs) represents a significant opportunity and challenge for medical big-data analytics. The challenge typically arises from the nature of the data which may be heterogeneous, sparse, very high-dimensional, incomplete and inaccurate. Of these, standard pattern recognition methods can typically address issues of high-dimensionality, sparsity and inaccuracy. The remaining issues of incompleteness and heterogeneity however are problematic; data can be as diverse as handwritten notes, blood-pressure readings and MR scans, and typically very little of this data will be co-present for each patient at any given time interval. We therefore advocate a kernel-based framework as being most appropriate for handling these issues, using the neutral point substitution method to accommodate missing inter-modal data. For pre-processing of image-based MR data we advocate a Deep Learning solution for contextual areal segmentation, with edit-distance based kernel measurement then used to characterize relevant morphology

    VIP-STB farm: scale-up village to county/province level to support science and technology at backyard (STB) program.

    Get PDF
    In this paper, we introduce a new concept in VIP-STB, a funded project through Agri-Tech in China: Newton Network+ (ATCNN), in developing feasible solutions towards scaling-up STB from village level to upper level via some generic models and systems. There are three tasks in this project, i.e. normalized difference vegetation index (NDVI) estimation, wheat density estimation and household-based small farms (HBSF) engagement. In the first task, several machine learning models have been used to evaluate the performance of NDVI estimation. In the second task, integrated software via Python and Twilio is developed to improve communication services and engagement for HBSFs, and provides technical capabilities. In the third task, crop density/population is predicted by conventional image processing techniques. The objectives and strategy for VIP-STB are described, experimental results on each task are presented, and more details on each model that has been implemented are also provided with future development guidance
    corecore