12,339 research outputs found

    Learning Rigid Image Registration - Utilizing Convolutional Neural Networks for Medical Image Registration

    Get PDF
    Many traditional computer vision tasks, such as segmentation, have seen large step-changes in accuracy and/or speed with the application of Convolutional Neural Networks (CNNs). Image registration, the alignment of two or more images to a common space, is a fundamental step in many medical imaging workflows. In this paper we investigate whether these techniques can also bring tangible benefits to the registration task. We describe and evaluate the use of convolutional neural networks (CNNs) for both mono- and multi- modality registration and compare their performance to more traditional schemes, namely multi-scale, iterative registration. This paper also investigates incorporating inverse consistency of the learned spatial transformations to impose additional constraints on the network during training and investigate any benefit in accuracy during detection. The approaches are validated with a series of artificial mono-modal registration tasks utilizing T1-weighted MR brain i mages from the Open Access Series of Imaging Studies (OASIS) study and IXI brain development dataset and a series of real multi-modality registration tasks using T1-weighted and T2-weighted MR brain images from the 2015 Ischemia Stroke Lesion segmentation (ISLES) challenge. The results demonstrate that CNNs give excellent performance for both mono- and multi- modality head and neck registration compared to the baseline method with significantly fewer outliers and lower mean errors

    Mesh-to-raster based non-rigid registration of multi-modal images

    Full text link
    Region of interest (ROI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from CAT scanners as pixel or voxel data. Previously, we presented a 2D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster (M2R) framework to register ROIs in multi-modal images; (ii) a 3D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2D using ground truth provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem where the objective consists of a data term, which involves the signed distance function of the ROI from the reference image, and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The ROI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit (ITK) and Elastix

    Deformable Registration through Learning of Context-Specific Metric Aggregation

    Full text link
    We propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional similarity measures. Conventional metrics have been extensively used over the past two decades and therefore both their strengths and limitations are known. The challenge is to find the optimal relative weighting (or parameters) of different metrics forming the similarity measure of the registration algorithm. Hand-tuning these parameters would result in sub optimal solutions and quickly become infeasible as the number of metrics increases. Furthermore, such hand-crafted combination can only happen at global scale (entire volume) and therefore will not be able to account for the different tissue properties. We propose a learning algorithm for estimating these parameters locally, conditioned to the data semantic classes. The objective function of our formulation is a special case of non-convex function, difference of convex function, which we optimize using the concave convex procedure. As a proof of concept, we show the impact of our approach on three challenging datasets for different anatomical structures and modalities.Comment: Accepted for publication in the 8th International Workshop on Machine Learning in Medical Imaging (MLMI 2017), in conjunction with MICCAI 201

    Quicksilver: Fast Predictive Image Registration - a Deep Learning Approach

    Get PDF
    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni- / multi- modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software.Comment: Add new discussion
    • …
    corecore