3,025 research outputs found

    Disambiguating Multi–Modal Scene Representations Using Perceptual Grouping Constraints

    Get PDF
    In its early stages, the visual system suffers from a lot of ambiguity and noise that severely limits the performance of early vision algorithms. This article presents feedback mechanisms between early visual processes, such as perceptual grouping, stereopsis and depth reconstruction, that allow the system to reduce this ambiguity and improve early representation of visual information. In the first part, the article proposes a local perceptual grouping algorithm that — in addition to commonly used geometric information — makes use of a novel multi–modal measure between local edge/line features. The grouping information is then used to: 1) disambiguate stereopsis by enforcing that stereo matches preserve groups; and 2) correct the reconstruction error due to the image pixel sampling using a linear interpolation over the groups. The integration of mutual feedback between early vision processes is shown to reduce considerably ambiguity and noise without the need for global constraints

    Children, Humanoid Robots and Caregivers

    Get PDF
    This paper presents developmental learning on a humanoid robot from human-robot interactions. We consider in particular teaching humanoids as children during the child's Separation and Individuation developmental phase (Mahler, 1979). Cognitive development during this phase is characterized both by the child's dependence on her mother for learning while becoming awareness of her own individuality, and by self-exploration of her physical surroundings. We propose a learning framework for a humanoid robot inspired on such cognitive development

    Deep Learning for Free-Hand Sketch: A Survey

    Get PDF
    Free-hand sketches are highly illustrative, and have been widely used by humans to depict objects or stories from ancient times to the present. The recent prevalence of touchscreen devices has made sketch creation a much easier task than ever and consequently made sketch-oriented applications increasingly popular. The progress of deep learning has immensely benefited free-hand sketch research and applications. This paper presents a comprehensive survey of the deep learning techniques oriented at free-hand sketch data, and the applications that they enable. The main contents of this survey include: (i) A discussion of the intrinsic traits and unique challenges of free-hand sketch, to highlight the essential differences between sketch data and other data modalities, e.g., natural photos. (ii) A review of the developments of free-hand sketch research in the deep learning era, by surveying existing datasets, research topics, and the state-of-the-art methods through a detailed taxonomy and experimental evaluation. (iii) Promotion of future work via a discussion of bottlenecks, open problems, and potential research directions for the community.Comment: This paper is accepted by IEEE TPAM

    Cross-Paced Representation Learning with Partial Curricula for Sketch-based Image Retrieval

    Get PDF
    In this paper we address the problem of learning robust cross-domain representations for sketch-based image retrieval (SBIR). While most SBIR approaches focus on extracting low- and mid-level descriptors for direct feature matching, recent works have shown the benefit of learning coupled feature representations to describe data from two related sources. However, cross-domain representation learning methods are typically cast into non-convex minimization problems that are difficult to optimize, leading to unsatisfactory performance. Inspired by self-paced learning, a learning methodology designed to overcome convergence issues related to local optima by exploiting the samples in a meaningful order (i.e. easy to hard), we introduce the cross-paced partial curriculum learning (CPPCL) framework. Compared with existing self-paced learning methods which only consider a single modality and cannot deal with prior knowledge, CPPCL is specifically designed to assess the learning pace by jointly handling data from dual sources and modality-specific prior information provided in the form of partial curricula. Additionally, thanks to the learned dictionaries, we demonstrate that the proposed CPPCL embeds robust coupled representations for SBIR. Our approach is extensively evaluated on four publicly available datasets (i.e. CUFS, Flickr15K, QueenMary SBIR and TU-Berlin Extension datasets), showing superior performance over competing SBIR methods

    Learning to Generate and Refine Object Proposals

    Get PDF
    Visual object recognition is a fundamental and challenging problem in computer vision. To build a practical recognition system, one is first confronted with high computation complexity due to an enormous search space from an image, which is caused by large variations in object appearance, pose and mutual occlusion, as well as other environmental factors. To reduce the search complexity, a moderate set of image regions that are likely to contain an object, regardless of its category, are usually first generated in modern object recognition subsystems. These possible object regions are called object proposals, object hypotheses or object candidates, which can be used for down-stream classification or global reasoning in many different vision tasks like object detection, segmentation and tracking, etc. This thesis addresses the problem of object proposal generation, including bounding box and segment proposal generation, in real-world scenarios. In particular, we investigate the representation learning in object proposal generation with 3D cues and contextual information, aiming to propose higher-quality object candidates which have higher object recall, better boundary coverage and lower number. We focus on three main issues: 1) how can we incorporate additional geometric and high-level semantic context information into the proposal generation for stereo images? 2) how do we generate object segment proposals for stereo images with learning representations and learning grouping process? and 3) how can we learn a context-driven representation to refine segment proposals efficiently? In this thesis, we propose a series of solutions to address each of the raised problems. We first propose a semantic context and depth-aware object proposal generation method. We design a set of new cues to encode the objectness, and then train an efficient random forest classifier to re-rank the initial proposals and linear regressors to fine-tune their locations. Next, we extend the task to the segment proposal generation in the same setting and develop a learning-based segment proposal generation method for stereo images. Our method makes use of learned deep features and designed geometric features to represent a region and learns a similarity network to guide the superpixel grouping process. We also learn a ranking network to predict the objectness score for each segment proposal. To address the third problem, we take a transformation-based approach to improve the quality of a given segment candidate pool based on context information. We propose an efficient deep network that learns affine transformations to warp an initial object mask towards nearby object region, based on a novel feature pooling strategy. Finally, we extend our affine warping approach to address the object-mask alignment problem and particularly the problem of refining a set of segment proposals. We design an end-to-end deep spatial transformer network that learns free-form deformations (FFDs) to non-rigidly warp the shape mask towards the ground truth, based on a multi-level dual mask feature pooling strategy. We evaluate all our approaches on several publicly available object recognition datasets and show superior performance

    Anomaly Detection in Autonomous Driving: A Survey

    Full text link
    Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.Comment: Daniel Bogdoll and Maximilian Nitsche contributed equally. Accepted for publication at CVPR 2022 WAD worksho

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
    • …
    corecore